Главная Содержание Предметный указатель Авторы

Содержание

Введение Глава 1. Правовые основы охраны труда Глава 2. Организационные основы охраны труда Глава 3. Условия труда и производственный травматизм Глава 4. Производственный микроклимат и основные Глава 5. Освещение производственных помещений Глава 6. Химические факторы и методы защиты Глава 7. Защита работающих от шума, вибрации, инфра- и ультразвуков Глава 8. Защита производственного персонала от статического электричества и производственных излучений Глава 9. Безопасность  производственных зданий и территорий Глава 10.  Основы электробезопасности Глава 11. Безопасность эксплуатации сосудов и аппаратов, работающих под давлением Глава 12. Безопасность эксплуатации компрессоров, насосов, газгольдеров Глава13. Безопасность эксплуатации производственных  трубопроводов Глава 14. Безопасность эксплуатации производственного транспорта, грузоподъемных машин и механизмов Глава 15. Безопасность труда при проведении  работ с повышенной опасностью Глава 16. Требования безопасности при работе Глава 17. Физико-химические основы процесса горения Глава 18. Основы профилактики взрывов и пожаров Глава 19. Средства тушения пожаров и пожарная сигнализация Литература

Глава 10.  Основы электробезопасности

 

10.1. Общие положения

Электрическая энергия является одним из наиболее удобных и экономически выгодных видов энергоресурсов. Она одинаково широко используется как на производстве, так и в быту.

         Для производства, передачи и распределения электроэнергии между потребителями в Республике Беларусь сооружены и эксплуатируются тепловые электрические станции мощностью до 2,4 миллиона киловатт,  электрические сети напряжением от 0,4 до 750 кВ и сотни тысяч электроустановок.

В соответствии с Правилами устройства электроустановок (ПУЭ) электроустановками называются совокупность машин, аппаратов, линий и вспомогательного оборудования (вместе с сооружениями и помещениями, в которых они установлены), предназначенных для производства, преобразования, трансформации, передачи, распределения электрической энергии и преобразования ее в другой вид энергии.

По требованиям обеспечения надежности электроснабжения электроприемники делятся на три категории:

I – электроприемники, бесперебойная работа которых необходима для безаварийного останова производства с целью предотвращения угрозы жизни людей, взрывов, пожаров;

II - электроприемники, перерыв питания которых приводит к резкому снижению выпуска продукции, длительным простоям технологического оборудования;

III – все остальные потребители, не относящиеся к I и II категориям.

 Электрические установки, с которыми приходится иметь дело практически всем работающим на производстве, представляют потенциальную опасность. Она заключается в том, что токоведущие проводники (или корпуса машин, оказавшиеся под напряжением в результате повреждения изоляции) не подают сигналов опасности, на которые реагирует человек. Реакция человека на электрический ток возникает лишь после его прохождения через ткани.

 При эксплуатации электроустановок, технологического оборудования с электроприводом, электробытовых приборов человек подвергается не только опасному воздействию электрического тока, но и вредному влиянию электромагнитных полей.

Статистика электротравматизма показывает, что до 85 % смертельных поражений людей электрическим током приходится в результате прикосновения пострадавшего непосредственно к токоведущим частям, находящимся под напряжением.  

         Основными причинами электротравм на производстве являются неудовлетворительная организация работ на электроустановках, незнание и невыполнение руководителями работ и потерпевшими требований электробезопасности, неиспользование работающими средств индивидуальной защиты, несоответствие электроустановок установленным требованиям правил и норм.

 

10.2. Действие электрического тока на организм человека

Проходя через организм, электрический ток вызывает термическое, электролитическое и биологическое воздействие.

Термическое действие тока вызывает ожоги отдельных участков тела, нагрев кровеносных сосудов, нервов, крови и т.п.

Электролитическое действие тока выражается в разложении крови и других органических жидкостей организма и вызывает значительные нарушения их физико-химического состава.

Биологическое действие тока проявляется как раздражение и возбуждение живых тканей организма, что сопровождается непроизвольными судорожными сокращениями мышц, легких и сердца. В результате могут возникнуть различные нарушения, и даже полное прекращение деятельности органов кровообращения и дыхания.

Многообразие воздействия электрического тока выражается в получении двух видов поражения — электрической травме и электрическом ударе.

Электрическая травма представляют собой четко выраженное местное повреждение тканей организма в результате воздействия электрического тока или электрической дуги. В большинстве случаев электротравмы излечиваются, однако при тяжелых ожогах исход поражения может быть смертельным.

Различают несколько видов электрических травм.

Электрический ожог, являющийся самой распространенной электротравмой, может быть токовым (или контактным) и дуговым.

Токовый ожог обусловлен прохождением тока через тело человека в результате его контакта с токоведущей частью и является следствием преобразования электрической энергии в тепловую. Количество теплоты, выделяемой в ткани человека (Дж), определяется законом Джоуля-Ленца

 

Q = (Iч)2Rчτ,

 

где Iч - сила тока, проходящего через тело человека, А;

      Rч - сопротивление тела человека, Ом; τ - время протекания тока, с..

Ожоги разделяют на четыре степени: I- покраснение кожи, II-образование пузырей, III-омертвение всей толщи кожи; IV-обугливание тканей. Тяжесть поражения организма обусловливается не степенью ожога, а площадью обожженной поверхности тела. Токовые ожоги возникают при напряжении не выше 1-2 кВ и в большинстве случаев им присваивают I и II степень. Встречаются и тяжелые ожоги.

Дуговой ожог является следствием образования электрической дуги между токоведущей частью и телом человека, которая и причиняет ожог. Дуга имеет температуру выше 35000С и обладает весьма значительной энергией. Дуговые ожоги, как правило, тяжелые и имеют III или IV степень тяжести.

Электрические знаки — это четко очерченные пятна серого или, бледно-желтого цвета, образующиеся на коже человека в результате действия тока. Знаки могут быть и в виде царапин, ран, порезов или ушибов, бородавок, кровоизлияний и мозолей. Как правило, электрические знаки безболезненны, и лечение их заканчивается благополучно.

Металлизация кожи - это проникновение в верхние слои кожи мельчайших частичек металла, расплавившегося под действием электрической дуги. Это может произойти при коротком замыкании, отключении рубильника, находящегося под нагрузкой и т. п. Металлизация сопровождается ожогом кожи, вызываемым нагретым металлом.

Электроофтальмия - это поражение глаз, вызванное интенсивным излучением электрической дуги, спектр которой содержит вредные для глаз ультрафиолетовые и инфракрасные лучи. Кроме того, возможно попадание в глаза брызг расплавленного металла. Ношение защитных очков, не пропускающих ультрафиолетовые лучи, обеспечивают защиту глаз от брызг расплавленного металла.

Механические повреждения возникают в результате резких непроизвольных судорожных сокращений мышц под действием тока, проходящего через тело человека. В результате могут произойти разрывы кожи, кровеносных сосудов и нервной ткани, а также вывихи суставов и даже переломы костей. К этому же виду травм следует отнести ушибы и переломы, вызванные падением человека с высоты, ударами о предметы в результате непроизвольных движений или потери сознания при воздействии тока. Механические повреждения являются, как правило, серьезными травмами, требующими длительного лечения.

Электрический удар - это возбуждение живых тканей организма проходящим через него электрическим током, сопровождающееся непроизвольными судорожными сокращениями мышц. Электрические удары в зависимости от исхода воздействия тока на организм условно делят на следующие четыре степени: I -судорожное сокращение мышц; II — судорожное сокращение мышц, потеря сознания; III — потеря  сознания  и  нарушение сердечной   деятельности   или   дыхания   (либо  того  и  другого  вместе);  IV— клиническая смерть, т.е. отсутствие дыхания и кровообращения.

Причинами смерти в результате поражения электрическим током могут быть прекращение работы сердца или легких и электрический шок.

Прекращение работы сердца, как следствие воздействия тока на мышцу сердца, наиболее опасно. Это воздействие может быть прямым, когда ток протекает через область сердца, и рефлекторным, когда ток проходит через центральную нервную систему.

В обоих случаях может произойти остановка сердца или наступить его фибрилляция (беспорядочное сокращение мышечных волокон сердца — фибрилл), что приводит к остановке кровообращения.

Прекращение дыхания может быть вызвано прямым или рефлекторным воздействием тока на мышцы грудной клетки, участвующие в процессе дыхания.

При длительном действии тока у человека наступает так называемая асфиксия (удушье) - болезненное состояние, являющееся результатом недостатка кислорода и избытка диоксида углерода в организме. При асфиксии последовательно утрачиваются сознание, чувствительность, рефлексы, затем прекращается дыхание и, наконец, останавливается сердце — наступает клиническая смерть.

Электрический шок - своеобразная тяжелая нервно-рефлекторная реакция организма на сильное раздражение электрическим  током, сопровождающаяся глубокими расстройствами кровообращения, дыхания, обмена веществ и т.п. Шоковое состояние длится от нескольких десятков минут до суток. После этого может  наступить либо полное выздоровление, как результат своевременного лечебного вмешательства, или гибель организма из-за полного угасания жизненно важных функций.

10.3. Факторы, определяющие опасность поражения электрическим током

Характер и последствия воздействия на человека электрического тока определяются электрическим сопротивлением тела человека, напряжением тока и продолжительностью воздействия электрического тока. Они также зависят от пути прохождения тока через тело человека, рода и частоты электрического тока, а также от условий внешней среды и индивидуальных особенностей человека.

Электрическое сопротивление тела человека. Тело человека является проводником электрического тока, неоднородным по электрическому сопротивлению. Наибольшее сопротивление электрическому току оказывает кожа, поэтому общее сопротивление тела человека определяется главным образом величиной сопротивления кожи. Кожа состоит из двух основных слоев: наружного - эпидермиса и внутреннего дермы. Наружный слой - в свою очередь состоит из несколько слоев, из которых   верхний слой называется роговым.

Роговой слой в сухом незагрязненном состоянии можно рассматривать как   диэлектрик.    Его    удельное    объемное    сопротивление   достигает     105–106 Ом·м, в тысячи раз превышая сопротивление других слоев кожи (дермы) и внутренних тканей организма.

Сопротивление тела человека при сухой чистой и неповрежденной коже (измеренное при напряжении 15-20 В) колеблется в пределах от 3 до 100 кОм и более, а сопротивление внутренних слоев тела составляет всего 300-500 Ом.

Для проведения расчетов величину сопротивления тела человека принимают равной 1000 Ом.

В действительности сопротивление тела человека не является постоянным. Оно зависит от состояния кожи, окружающей среды, параметров электрической цепи и т.д. Повреждения рогового слоя (порезы, царапины, ссадины) снижают сопротивление тела до 500-700 Ом, что увеличивает опасность поражения человека током. Такое же влияние оказывает увлажнение кожи водой или потом. Поэтому работа с электроустановками влажными руками и в условиях, вызывающих увлажнение кожи, а также при повышенной температуре усугубляет опасность поражения человека током.

Загрязнение кожи вредными веществами, хорошо проводящими электрический ток (пыль, окалина), тоже приводит к снижению ее сопротивления.

Имеют значение площадь контакта и место касания, поскольку сопротивление кожи неодинаково на разных участках тела. Наименьшим сопротивлением обладает кожа лица, шеи, ладоней и рук, особенно на стороне, обращенной к туловищу (подмышечных впадинах и др.). Кожа тыльной стороны кисти и подошв имеет сопротивление, во много раз превышающее сопротивление кожи других участков тела.

При увеличении тока и времени его прохождения сопротивление тела человека падает, потому что вследствие местного нагрева кожи расширяются сосуды, усиливается кровоснабжение этого участка и потовыделение.

Сопротивление тела человека уменьшается при повышении частоты тока и при 10-20 кГц наружный слой кожи практически утрачивает устойчивость к электрическому току.

Сила тока и напряжение. Основным фактором, определяющим исход поражения человека электрическим током, является сила тока, проходящего через его тело (табл. 10.1). С увеличением силы тока сопротивление тела человека падает, так как усиливается местный нагрев кожи, что приводит к расширению сосудов, усилению снабжения этого участка кровью и увеличению потовыделения.

Таблица 10.1. Пороговые значения различных видов тока

Вид электрического тока, протекающего через организм человека *

Сила тока, мА

Переменный ток

Постоянный ток

Ощутимый -  вызывает ощутимые раздражения

Неотпускающий  - вызывает непреодолимые судорожные сокращения мышц руки, в которой зажат проводник

Фибрилляционный  - вызывает фибрилляцию сердца

 

0,6-1,5

 

 

10-15

 

100

 

5-7

 

 

50-60

 

300

* Мгновенная остановка сердца наступает при силе тока, равной 5 А.

Напряжение, приложенное к телу человека, также влияет на исход поражения, поскольку оно определяет значение силы тока, проходящего через человека. Рост напряжения приводит к пробою рогового слоя кожи, сопротивление кожи уменьшается в десятки раз, приближаясь к сопротивлению внутренних тканей (300— 500 Ом), соответственно увеличивается сила тока.

Особенности воздействия электрического тока на организм человека передаются данными табл. 10.2.


 

Таблица 10.2. Особенности воздействия электрического тока

 на организм человека

Сила тока, мА

Характер воздействия

Переменный ток 50 Гц

Постоянный ток

0,6 – 1,5

Начало ощущения - слабый зуд, пощипывание кожи под электродами

Не ощущается

2,0 – 4,0

Ощущение тока распространяется и на запястье руки, слегка сводит руку

Не ощущается

5,0 – 0,7

Болевые ощущения усиливаются во всей кисти, сопровождаясь судорогами; слабые боли ощущаются во всей руке, вплоть до предплечья

Начало ощущения. Впечатле-ние нагрева кожи под электродом

8,0 – 10

Сильные боли и судороги во всей руке, включая предплечье. Руки еще можно оторвать от электродов

Усиление ощущения нагрева

10 – 15

Едва переносимые боли во всей руке. Руки невозможно оторвать от электродов. С увеличением продолжительности протекания тока боли усиливаются

Еще большее усиление ощущения нагрева как под электродами, так и в прилегающих областях кожи

20 – 25

Руки парализуются мгновенно, оторваться от электродов невозможно. Сильные боли, дыхание затруднено

Еще большее усиление ощущения нагрева кожи, возникновение ощущения внутреннего нагрева. Незначительные сокращения мышц рук

25 – 50

Очень сильная боль в руках и груди. Дыхание крайне затруднено. При длительном токе может наступить паралич дыхания или ослабление деятельности сердца с потерей сознания

Ощущение сильного нагрева, боли и судороги в руках. При отрыве рук от электродов возникают едва переносимые боли в результате судорожного сокращения мышц

50 – 80

Дыхание парализуется через несколько секунд, нарушается работа сердца. При длительном протекании тока может наступить фибрилляция сердца

Ощущения очень сильного

поверхностного и внутреннего нагрева, сильные боли во всей руке и в области груди. Затруднение дыхания. Руки невозможно оторвать от электродов из-за сильных болей при нарушении контакта

100

Фибрилляция   сердца   через   2-3 с; еще через несколько секунд - паралич дыхания

Паралич дыхания при длительном протекании тока

300

То же действие за меньшее время

Фибрилляция   сердца   через  2-3 с; еще через несколько секунд - паралич дыхания

Более 5000

Дыхание парализуется немедленно - через доли секунды. Фибрилляция сердца, как правило, не наступает; возможна временная остановка сердца в период протекания тока. При длительном протекании тока (несколько секунд) тяжелые ожоги, разрушение тканей

 

Род и частота электрического тока. Постоянный ток примерно в 4-5 раз безопаснее переменного, что видно из сопоставления пороговых значений ощутимого и неотпускающего постоянного и переменного токов. Но это справедливо лишь до напряжений 250-300 В. При более высоких значениях напряжения постоянный ток становится более опасным, чем переменный (с частотой 50 Гц).

При воздействии на человека  переменного тока важное значение имеет его частота. С увеличением его частоты полное сопротивление тела уменьшается и при 10—20 кГц наружный слой кожи практически утрачивает сопротивление электрическому току, что также приводит к увеличению тока, проходящего через человека, а, следовательно, повышается опасность поражения.

Наибольшую опасность представляет ток с частотой от 50 до 1000 Гц. При дальнейшем повышении частоты опасность поражения уменьшается и полностью исчезает при частоте 45—50 кГц. Эти токи опасны лишь с точки зрения ожогов. Снижение опасности поражения током с ростом частоты становится практически заметным при 1 — 2 кГц.

Продолжительность воздействия электрического тока. Длительное воздействие электрического тока приводит к тяжелым, а иногда смертельным поражениям человека.

Безопасным считается длительное воздействие тока силой 1 мА, при продолжительности действия до 30 с безопасен ток 6 мА.

Практически допустимыми с достаточно малой вероятностью поражения приняты следующие значения силы тока табл. (10.3).

Таблица 10.3. Допустимые значения силы тока в зависимости

 от длительности воздействия

Длительность воздействия, с

Сила тока, мА

1,0

50

0,7

70

0,5

100

0,2

250

 

Путь прохождения тока через тело человека. Этот фактор играет также существенную роль в исходе поражения, так как ток может пройти через жизненно важные органы — сердце, легкие, головной мозг и т.д.

Возможных путей прохождения тока через тело человека, которые называются также петлями тока, достаточно много. Наиболее часто встречающиеся петли тока: рука - рука, рука - ноги, нога - нога  представлены в табл. 10.4.

Наиболее опасны петли тока, которые затрагивают область сердца, т.е. голова - руки и голова – ноги, однако, они возникают относительно редко.

Индивидуальные свойства человека. Установлено, что физически здоровые и крепкие люди легче переносят электрические удары.

Повышенной восприимчивостью к электрическому току отличаются лица, страдающие болезнями кожи, имеющие заболевания сердечно-сосудистой системы, органов внутренней секреции и легких, нервные болезни и др.

Правилами безопасности при эксплуатации электроустановок предусматривается отбор персонала для обслуживания действующих электроустановок, исходя из состояния здоровья людей. С этой целью проводят медицинское освидетельствование лиц при поступлении их на работу, которое   проводится  один раз в два года с учетом перечня болезней и расстройств, являющихся противопоказанием к обслуживанию действующих электроустановок.

Таблица 10.4. Характеристика петель тока в теле человека

Путь тока

Частота возникновения данного пути тока

Доля людей, терявших сознание при прохождении тока

Рука — рука

Правая рука — ноги

Левая рука — ноги

Нога — нога

Голова — ноги

Голова — руки

Прочие

40

20

17

6

5

4

8

83

87

80

15

88

92

65

 

Условия внешней среды. Состояние окружающей воздушной, среды, а также окружающая обстановка могут существенным образом влиять на опасность поражения током.

Сырость, токопроводящая пыль, наличие едких паров и газов, разрушающе действующих на изоляцию электроустановок, а также высокая температура окружающего воздуха, снижают электрическое сопротивление тела человека, что еще больше увеличивает опасность поражения током.

Воздействие тока на человека усугубляют также токопроводящие полы и близко расположенные к электрооборудованию металлические конструкции, имеющие связь с землей, так как при одновременном касании этого предмета и корпуса электрооборудования, случайно оказавшегося под напряжением, через человека пройдет ток большой силы.

В зависимости от перечисленных условий, повышающих опасность воздействия тока на человека, «Правилами устройства электроустановок» (далее ПУЭ)  все помещения по опасности поражения людей электрическим током делят на четыре класса.

1. Помещения без повышенной опасности. Характеризуются отсутствием условий, создающих повышенную или особую опасность. 

2. Помещения с повышенной опасностью. Характеризуются наличием одного из следующих условий:

а)  сырость (когда относительная влажность воздуха длительное время превышает 75 %) или токопроводящая пыль;

б)  токопроводящие полы (металлические, земляные, железобетонные, кирпичные и др.);

в)  высокая температура (выше 350С);

г)  возможность одновременного прикосновения человека к имеющим соединение с землей металлоконструкциям зданий, технологическим аппаратам, механизмам и т.п., с одной стороны, и к металлическим корпусам электрооборудования, с другой.

3.  Особо опасные помещения. Характеризуются наличием одного из нижеперечисленных условий:

а) особая сырость (при относительной влажности воздуха, близкой к 100%, когда потолок, стены, пол и предметы, находящиеся в помещении, покрыты влагой);

б) химически активная или органическая среда, разрушающая изоляцию и токоведущие части электрооборудования;

в) наличие одновременно двух или более условий повышенной опасности. 

4. Территории размещения наружных электроустановок. По опасности поражения людей электрическим током эти территории приравниваются к особо опасным помещениям.

В химической промышленности многие производственные помещения являются особо опасными.

Кроме того, в зависимости от климатической среды, помещения подразделяют на: сухие (нормальные) с влажностью до 60%, влажные (60-75%), сырые (более 75%), особо сырые (с влажностью, близкой к 100 %), жаркие (при постоянной температуре выше 35 0С),  пыльные, помещения с химически активной или органической средой.

Электрооборудование следует выбирать с учетом состояния окружающей среды и класса помещения по опасности поражения током, чтобы обеспечить необходимую степень безопасности людей при его обслуживании.

Для защиты электрооборудования от воздействия химически активной среды необходимо, чтобы оно соответствовало условиям эксплуатации. Материал, из которого выполнено электрооборудование, должен быть коррозионностойким, металлические части должны быть надежно защищены лакокрасочным или гальваническим покрытием. Соответствующие требования предъявляются и к электропроводке.

Так, электрическое оборудование, установленное в сырых, особо сырых и пыльных помещениях, а также в помещениях с химически активной средой, должно быть закрытого типа, иметь соответствующее исполнение: капле-,  брызгозащищенное, пыленепроницаемое, продуваемое. Кроме того, материалы, из которого выполнено электрооборудование, должны быть коррозионностойкими, а металлические части — надежно защищены лакокрасочным или гальваническим покрытием.

Электрооборудование и электрические сети, размещаемые в помещениях с химически активной средой, а также места их прокладки следует выбирать с учетом исполнения и покрытия, обеспечивающего их защиту от воздействия агрессивной среды.

Во взрывоопасных зонах всех классов с химически активными средами применяют провода и кабели с поливинилхлоридной изоляцией, а также провода с резиновой и кабели с резиновой и бумажной изоляцией в свинцовой или поливинилхлоридной оболочке. Использование проводов и кабелей с полиэтиленовой изоляцией в любых оболочках и покрытиях не допускается.

В зависимости от класса помещений по опасности поражения электрическим током устанавливается величина безопасного напряжения, при котором не требуется специальных мер защиты. Для помещений с повышенной опасностью U = 36 В, в особо опасных помещениях U = 12 В, для помещений без повышенной опасности U = 220 В. Эти величины напряжений учитывают при устройстве местного освещения, работе с ручным электроинструментом и т.п..

10.4. Условия и основные причины поражения электрическим током

При изучении причин электротравматизма необходимо различать прямой контакт человека с токоведущими частями электроустановок и косвенный. Первый, как правило, возникает при грубейших нарушениях правил эксплуатации электроустановок, второй - в результате аварийных ситуаций, например при пробое изоляции.

Поражение человека электрическим током возможно лишь при его непосредственном контакте с точками электроустановки, между которыми существует разность потенциалов, или с точкой, потенциал которой отличается от потенциала земли. Опасность такого прикосновения оценивается величиной тока, проходящего через тело человека, или напряжением прикосновения. Напряжение прикосновения - это напряжение между точками цепи тока, которых одновременно касается человек  (ГОСТ 12.1.009). Необходимо иметь в виду, что электрическая цепь - это совокупность устройств и объектов, образующих путь для электрического тока, электромагнитные процессы в котором могут быть описаны с помощью понятий об электродвижущей силе, токе и напряжении.

В свою очередь, напряжения прикосновения и токи, проходящие через тело человека, зависят от схемы включения его в электросеть, ее напряжения, схемы самой сети, режима ее нейтрали, степени изоляции токоведущих частей, их емкостной составляющей относительно земли и многих других факторов. Выбор схемы сети и, соответственно, режима нейтрали источника тока определяется как технологическими требованиями (величина рабочего напряжения, протяженность сети, количество потребителей и т.п.), так и условиями безопасности.

Трехфазные сети различаются в зависимости от режима нейтрали и наличия нулевого провода (рис. 10.1).

Нейтралью  называется  точка  соединения  обмоток трансформатора или генератора, не присоединенная к заземляющему устройству, либо присоединенная к нему через аппараты с большим сопротивлением (сеть с изолированной нейтралью), либо непосредственно соединенная с заземляющим устройством (сеть с глухозаземленной нейтралью).

В соответствии с ПУЭ глухозаземленной нейтралью называется нейтраль трансформатора или генератора, присоединенная к заземляющему устройству непосредственно или через малое сопротивление (например, через трансформаторы тока). В свою очередь, изолированной нейтралью называется нейтраль трансформатора или генератора, не присоединенная к заземляющему устройству или присоединенная к нему через приборы сигнализации, измерения, защиты, заземляющие дугогасящие реакторы и подобные им устройства, имеющие большое сопротивление.

Правила устройства электроустановок предусматривают использование при напряжениях до 1000 В лишь двух схем трехфазных сетей: трехпроводной с изолированной нейтралью и четырехпроводной с глухозаземленной нейтралью. По технологическим требованиям предпочтение отдается четырехпроводной сети, так как в ней возможно применение двух рабочих напряжений - линейного и фазного.

Схемы включения человека в электросеть могут быть различными. Однако наиболее распространенными применительно к сетям переменного тока являются две: когда человек одновременно касается двух проводов (двухфазное включение) или когда он касается лишь одного провода или корпуса электрооборудования, находящегося под напряжением (однофазное включение). Во втором случае предполагается наличие электрической связи между сетью и землей.

Двухфазное включение человека в электрическую сеть с изолированной нейтралью (рисунок 16.2) является наиболее опасным, поскольку в данном случае человек находится под наибольшим в данной сети линейным напряжением.

При двухфазном включении, независимо от вида сетей, человек попадает под  полное  линейное  напряжение  сети  и  величина  силы  тока, проходящего через тело человека, определяется по формуле

Iч = Uл/Rч = Uф/Rч,

где Uл - линейное напряжение, т.е. напряжение между фазными проводами сети, В;

Rч, - сопротивление тела человека, Ом;

Uф - фазное напряжение (напряжение между началом и концом одной обмотки или между фазным и нулевым проводами), В.

В сети с линейным напряжением 380 В (Uф = 220 В) при сопротивлении тела человека 1000 Ом ток, проходящий через него, будет равен

Iч = 1,73·220/1000=0,38А.

Такая сила тока для человека является смертельно опасной.

При двухфазном включении ток, проходящий через тело человека, не зависит от режима нейтрали сети.

Таким образом, опасность поражения человека при двухфазном прикосновении не уменьшится даже в том случае, если он будет надежно изолирован от земли с помощью диэлектрических галош, бот, ковриков, пола.

Статистика свидетельствует, что наибольшее количество электротравм происходит при однофазном включении, причем большинство из них - в сетях с напряжением 380/220 В.

Однофазное   включение   человека   в  электрическую  сеть  (рис.10.3, 10.4) менее опасно, так как напряжение, под действием которого оказывается человек, не превышает фазного, т.е. меньше линейного в 1,73 раза. Соответственно будет меньше и сила тока, проходящего через тело человека. Однако в данном случае исход поражения будет определяться режимом нейтрали.

В трехфазной сети с глухозаземленной нейтралью петля тока, проходящего через человека, включает в себя кроме его собственного сопротивления, сопротивление обуви, пола, заземления нейтрали источника тока. Кроме того, следует иметь в виду, что все эти сопротивления включены в цепь последовательно. Таким образом, при однофазном включении в электрическую сеть с глухозаземленной нейтралью ток, проходящий через тело человека, определяется по формуле

Iч = Uф/(Rч + Rоб + Rп + Rз),

где Rоб, Rп и Rз - соответственно сопротивления обуви, пола и заземления нейтрали источника тока, Ом.

В наиболее неблагоприятных случаях, когда человек стоит на сырой земле или на металлическом полу и в сырой обуви, т.е. когда сопротивление обуви и пола приближается к нулю, а сопротивление заземления по условиям ПУЭ не должно превышать 10 Ом, сила тока, проходящего через тело человека, будет равна

Iч = Uф/Rч = 220/1000 = 0,22 А,

что является для него смертельным.

С другой стороны, если человек обут в нетокопроводящую обувь (резиновые галоши с сопротивлением 45 кОм) и стоит на изолирующем коврике или сухом деревянном полу Rп = 100 кОм, то сила тока, проходящего через тело человека, будет составлять

Iч = 220/(1000 + 45 000 + 100 000 + 10) = 0,0015 А.

Сила тока 1,5 мА не опасна для человека, что убедительно доказывает, насколько важную роль для безопасности работающих на электроустановках играют нетокопроводящая обувь и изолирующие полы.

В трехфазной сети с изолированной нейтралью петля тока включает сопротивление самого человека, его обуви, пола, а также сопротивление изоляции проводов сети, которая в исправном состоянии должна быть не менее 0,5 МОм.

В этом случае сила тока, проходящего через тело человека, определяется по формуле

Iч = Uф/(Rч + Rоб + Rп + Rиз/3),

где Rиз - сопротивление изоляции одной фазы сети относительно земли,  Ом.

Эта формула справедлива, если сопротивления каждой из фаз относительно земли одинаковы, а емкости фаз одинаковы и малы относительно земли и по величине стремятся к нулю (например, в воздушных сетях небольшой протяженности).

Условия безопасности в этом случае находятся в прямой зависимости от сопротивления изоляции фаз относительно земли: чем качественнее изоляция, тем меньше ток, проходящий через тело человека. Однако в аварийном режиме, когда одна из фаз замыкает на землю или корпус оборудования или сопротивление изоляции мало, человек может оказаться под полным линейным напряжением.

В  случае  аварийной  ситуации,  при  замыкании  одной  из  фаз на землю

(Rиз=0), человек может оказаться под действием линейного напряжения и  сила тока, проходящего через него, будет равна

Iч = Uф/(Rч + Rоб) = 1,73·220/(1000 + 0) = 0,38 А.

В производственных условиях изоляция фазных проводов, изготовленных из диэлектрических материалов, в процессе старения, увлажнения, воздействия агрессивных сред, истирания, повреждения и т.п. изменяется неодинаково. Поэтому расчет безопасных условий эксплуатации электроустановок осложняется вследствие необходимости учета реальных значений сопротивления изоляции каждой из фаз сети.

При больших значениях емкостей проводов относительно земли (например, в кабельных линиях) сила тока, проходящего через тело человека, будет определяться только емкостной составляющей

Iч = Uф/+ (Х/3)2

где X - емкостное сопротивление одной фазы, Ом.

При наиболее неблагоприятных условиях, когда человек имеет токопроводящую обувь и стоит на токопроводящем полу, сила тока определится из выражения

Iч = Uф/(Rч + Rиз/3) = 220/(1000 + 500 000/3) = 0,0013 А

Таким образом, при прочих равных условиях прикосновение человека к одной из фаз сети с изолированной нейтралью менее опасно, чем сети с глухозаземленной нейтралью. Однако это положение справедливо лишь для нормальных режимов работы сетей.

Следовательно, вышеприведенные расчеты показывают, что использование трехфазной сети с изолированной нейтралью более безопасно только при нормальных режимах работы, а в аварийных режимах она становится опаснее сети с глухозаземленной нейтралью. Отсюда вытекает необходимость постоянного контроля сопротивления изоляции проводов.

Сети с изолированной нейтралью следует использовать только в тех случаях, когда они мало разветвлены, в сухих беспыльных помещениях без агрессивной среды и опасности повреждения изоляции проводов. Кроме того, при эксплуатации электрической сети должны обеспечиваться небольшая емкость относительно земли и постоянный контроль за ее состоянием.

Электроустановки с рабочим напряжением выше 1000 В представляют значительную опасность при прикосновении к фазе независимо от режима нейтрали. Поэтому для предотвращения поражения током необходимо исключать возможность не только касания, но и приближения человека на опасное расстояние к токоведущим частям, находящимся под напряжением, поскольку может возникнуть искровой разряд, переходящий затем в электрическую дугу.

В электроустановках напряжением до 35 кВ нейтраль или совсем не заземляют (при низкой силе тока замыкания на землю), или заземляют через реактивную (дугогасящую) катушку, что обусловлено надежностью и экономичностью эксплуатации. При эксплуатации электроустановок с напряжением выше 35 кВ используется только сеть с глухозаземленной нейтралью.

Замыкание одной из фаз на землю может происходить при повреждении изоляции и пробое фазы на заземленный корпус электрооборудования, при падении на землю провода под напряжением и по другим причинам. Такое замыкание может быть случайным или преднамеренным. В последнем случае проводник, находящийся в контакте с землей, называется заземлителем или электродом.

В объеме земли, где протекает ток, возникает так называемая «зона растекания тока замыкания на землю» - зона земли, за пределами которой электрический потенциал, обусловленный токами замыкания на землю, может быть условно принят равным нулю (ГОСТ 12.1.009). В соответствии с этим ток замыкания на землю — это ток, проходящий через место замыкания на землю.

Теоретически зона растекания простирается до бесконечности, однако в реальных условиях уже на расстоянии 20 м от заземлителя плотность тока растекания и потенциал практически равны нулю.

Характер потенциальной кривой растекания существенным образом зависит от формы заземлителя. Так, для одиночного полусферического заземлителя потенциал на поверхности земли будет изменяться по уравнению гиперболы.

На рис. 10.5 показана принципиальная схема распределения потенциала на поверхности земли вокруг полусферического заземлителя.

Растекание тока замыкания в грунте определяет характер распределения потенциалов на поверхности земли, что, в свою очередь, приводит к возникновению нового вида поражения человека, а именно попадание его под напряжение прикосновения или напряжение шага.

Напряжение прикосновения может возникнуть в том случае, если человек будет находиться на земле или на токопроводящем полу и касаться при этом корпуса заземленного электрооборудования, случайно оказавшегося под напряжением.

Человек также может оказаться под напряжением, попав в зону растекания тока в земле при обрыве провода, наличии заземляющего устройства, при ударе молнии и стекании электрического разряда в землю, повреждении изоляции проводов и т.д. Это напряжение называют напряжением шага, т.е. напряжением между двумя точками цепи тока, находящимися одна от другой на расстоянии длины шага, на которых одновременно стоит человек (ГОСТ 12.1.009).

На рис. 10.6 показана схема зоны растекания тока в земле через заземлитель при коротком замыкании одной из фаз на корпус электроустановки (пробое на корпус) и появления шагового напряжения.

 

Напряжение шага определяется как разность потенциалов отдельных точек земли, которые оказываются под ногами человека в зоне растекания тока

Uшаг = φ1 - φ2 = Iзρа/2πх(х + а)

где φ1 и φ2 - потенциалы точек земли, на которых стоит человек, В;

Iз - ток замыкания на землю, А;

ρ - удельное сопротивление грунта, Ом·м;

а — длина шага человека (0,8 м);

х - расстояние от заземлителя до одной ноги, м.

Из рис. 10.6 и формулы видно, что наибольшее напряжение возникает в точке замыкания на землю, на расстоянии 1 м оно составляет 0,5-0,7 от полного, а в точках В1 и В2 (на расстоянии примерно 20 м) по уравнению гиперболы оно снижается практически до нуля.

Очевидно, чем шире шаг, тем шаговое напряжение будет выше и может достигнуть опасной величины. Поражение при шаговом напряжении усугубляется тем, что из-за судорожных сокращений мышц ног человек может упасть, тем самым увеличивая величину шагового напряжения за счет своего роста и замыкания цепи тока на теле через жизненно важные органы. Поэтому выходить из зоны растекания тока необходимо короткими шагами. Напряжение шага считается допустимым, если оно не превышает 40 В. В случае падения провода на землю, не допускается приближение к нему в радиусе 6-8 м от места замыкания на землю.

10.5. Оказание первой доврачебной помощи при поражении электрическим током

Первую доврачебную помощь пораженному током человеку должен уметь оказать каждый работающий с электроустановками. Первая помощь в случае поражения человека электрическим током состоит из двух этапов:  освобождение пострадавшего от действия тока и оказание ему  доврачебной медицинской помощи.

Освобождение пострадавшего от действия тока. Необходимо как можно скорее освободить пострадавшего от действия тока, так как от продолжительности этого действия зависит исход электротравмы.

Прикосновение к токоведущим частям вызывает в большинстве случаев непроизвольное судорожное сокращение мышц и общее возбуждение, которое может привести к нарушению и даже полному прекращению деятельности органов дыхания и кровообращения. Если пострадавший удерживает провод руками, его пальцы так сильно сжимаются, что высвободить провод из его рук становится невозможным, поэтому первое действие  оказывающего помощь должно состоять в  немедленном отключении той части электроустановки, которой касается пострадавший. Отключение производится с помощью выключателей, рубильника или другого отключающего аппарата, а также путем удаления предохранителей (пробок), разъема штепсельного соединения.

Если пострадавший находится на высоте, то отключение установки и тем самым освобождение от тока может вызывать его падение. В этом случае необходимо принять меры, предупреждающие падение пострадавшего или обеспечивающие его безопасность.

При отключении электроустановки может одновременно погаснуть электрический свет. В связи с этим при отсутствии дневного освещения необходимо позаботиться об освещении от другого источника (включить аварийное освещение, аккумуляторные фонари и т.п.) с учетом взрывоопасности и пожароопасности помещения, не задерживая отключения электроустановки и оказания помощи пострадавшему.

Если отключить установку достаточно быстро нельзя, необходимо принять иные меры к освобождению пострадавшего от действия тока. Во всех случаях оказывающий помощь не должен прикасаться к пострадавшему без надлежащих мер предосторожности, так как это опасно для жизни. Он должен следить и за тем, чтобы самому не оказаться в контакте с токоведущей частью и под напряжением шага.

Для отделения пострадавшего от токоведущих частей или провода напряжением до 1000 В следует воспользоваться канатом, палкой, доской или каким-либо другим сухим предметом, не проводящим электрический ток. Можно также оттянуть его за одежду (если она сухая и отстает от тела), например за полы пиджака или пальто, за воротник, избегая при этом прикосновения к окружающим металлическим предметам и частям тела пострадавшего, не прикрытым одеждой.

Оттаскивая пострадавшего за ноги, оказывающий помощь не должен касаться его обуви или одежды без хорошей изоляции своих рук, так как обувь и одежда могут быть сырыми и являться проводником электрического тока.

Для изоляции рук оказывающий помощь, особенно если ему необходимо коснуться тела пострадавшего, не прикрытого одеждой, должен надеть диэлектрические перчатки или обмотать руку шарфом, надеть на нее суконную фуражку, натянуть на руку рукав пиджака или пальто, накинуть на пострадавшего резиновый Коврик, прорезиненную материю (плащ) или просто сухую материю. Можно также изолировать себя, встав на резиновый коврик, сухую доску или какую-либо не проводящую электрический ток подстилку, сверток одежды и т.п.

При отделении пострадавшего от токоведущих частей рекомендуется действовать одной рукой, держа вторую в кармане или за спиной.

Если электрический ток проходит в землю через пострадавшего, и он судорожно сжимает в руке один токоведущий элемент (например, провод), проще прервать ток, отделив пострадавшего от земли (подсунуть под него сухую доску, либо оттянуть ноги от земли веревкой, либо оттащить за одежду), соблюдая при этом указанные выше меры предосторожности как по отношению к самому себе, так и по отношению к пострадавшему. Можно также перерубить провод топором с сухой деревянной рукояткой или перекусить его инструментом с изолированными рукоятками (кусачками, пассатижами и т.п.). Перерубать или перекусывать провода необходимо пофазно, т.е. каждый провод в отдельности, при этом рекомендуется, по возможности, стоять на сухих досках, деревянной лестнице и т.п. Можно воспользоваться и неизолированным инструментом, обернув его рукоятку сухой материей.

Для отделения пострадавшего от токоведущих частей, находящихся под напряжением выше 1000 В, следует надевать диэлектрические перчатки и боты и действовать штангой или изолирующими клещами, рассчитанными на соответствующее напряжение. При этом надо помнить об опасности напряжения шага, если токоведущая часть (провод и т.п.) лежит на земле. На линиях электропередачи, когда нельзя быстро отключить их от пунктов питания, для освобождения пострадавшего, если он касается проводов, следует произвести замыкание проводов накоротко, набросив на них гибкий неизолированный провод. Провод должен иметь достаточное сечение, чтобы он не перегорел при прохождении через него тока короткого замыкания.

Перед тем как произвести наброс, один конец провода надо заземлить (присоединить его к телу металлической опоры, заземляющему спуску и др.). Для удобства наброса на свободный конец проводника желательно прикрепить груз. Набрасывать проводник надо так, чтобы он не коснулся людей, в том числе оказывающего помощь и пострадавшего. Если пострадавший касается одного провода, то часто достаточно заземлить только этот провод.

Способы оказания первой помощи. После освобождения от действия тока пострадавшего необходимо вынести из опасной зоны и оценить его состояние. Признаки, по которым можно быстро определить состояние пострадавшего, следующие:

- сознание: ясное, отсутствует, нарушено (пострадавший заторможен), человек возбужден;

- цвет кожных покровов и видимых слизистых (губ, глаз): розовые, синюшные, бледные;

- дыхание: нормальное, отсутствует, нарушено (неправильное, поверхностное, хрипящее);

- пульс на сонных артериях: хорошо определяется (ритм правильный или неправильный), плохо определяется, отсутствует;

- зрачки: узкие, широкие.

При определенных навыках, владея собой, оказывающий помощь в течение минуты способен оценить состояние пострадавшего и решить, в каком объеме и порядке следует оказывать ему помощь.

Цвет кожных покровов и наличие дыхания (по подъему и опусканию грудной клетки) оценивают визуально. Нельзя тратить драгоценное время на прикладывание ко рту и носу зеркала, блестящих металлических предметов.

Об утрате сознания, как правило, судят визуально, и чтобы окончательно убедиться в его отсутствии, можно обратиться к пострадавшему, спросив о его самочувствии.

Пульс на сонной артерии прощупывают подушечками второго, третьего и четвертого пальцев руки, располагая их вдоль шеи между кадыком (адамово яблоко) и кивательной мышцей и слегка прижимая к позвоночнику. Приемы определения пульса на сонной артерии очень легко отработать на себе или своих близких.

Ширину зрачков при закрытых глазах определяют следующим образом: подушечки указательных пальцев кладут на верхние веки обоих глаз и, слегка придавливая их к глазному яблоку, поднимают вверх. При этом глазная щель открывается и на белом фоне видна округлая радужка, а в центре ее округлой формы - черные зрачки, состояние которых (узкие или широкие) оценивают по тому, какую площадь радужки они занимают.

Как правило, степень нарушения сознания, цвет кожных покровов и состояние дыхания можно оценивать одновременно с прощупыванием пульса, что отнимает не более минуты. Осмотр зрачков удается провести за несколько секунд.

Если у пострадавшего отсутствуют сознание, дыхание, пульс, кожный покров синюшный, а зрачки широкие (0,5 см в диаметре), можно считать, что он находится в состоянии клинической смерти. В этом случае следует немедленно приступать к оживлению организма (реанимации) с помощью искусственного дыхания по способу «изо рта в рот» или «изо рта в нос» и наружного массажа сердца. Не следует раздевать пострадавшего, теряя драгоценные секунды. Приступив к оживлению, нужно позаботиться о вызове врача или скорой медицинской помощи. Это должен сделать не оказывающий помощь, а кто-то другой.

Искусственное дыхание также необходимо проводить, если пострадавший дышит очень редко и судорожно и у него прощупывается пульс. Не обязательно, чтобы при проведении искусственного дыхания пострадавший находился в горизонтальном положении.

Для проведения искусственного дыхания желательно пострадавшего уложить на спину, расстегнуть стесняющую дыхание одежду. Необходимо обеспечить проходимость верхних дыхательных путей, которые в положении на спине при бессознательном состоянии всегда закрыты запавшим языком. Кроме того, в полости рта может находиться инородное содержимое (рвотные массы, песок, ил, трава, если человек тонул, и т.п.), которые необходимо удалить пальцем, обернутым платком (тканью) или бинтом. После этого оказывающий помощь располагается сбоку от головы пострадавшего, одну руку подсовывает под его шею, а ладонью другой руки надавливает на лоб пострадавшему, максимально запрокидывая голову. Корень языка пострадавшего поднимается и освобождает вход в гортань, а рот открывается. Оказывающий помощь наклоняется к лицу пострадавшего, делает глубокий вдох открытым ртом, полностью плотно охватывает губами открытый рот пострадавшего и делает энергичный выдох, с некоторым усилием вдувая воздух в его рот; одновременно он закрывает нос пострадавшего щекой или пальцами руки.

 Необходимо обязательно наблюдать за грудной клеткой пострадавшего. Как только грудная клетка поднялась, нагнетание воздуха приостанавливают, оказывающий помощь поворачивает лицо в сторону, происходит пассивный выдох у пострадавшего. Если у пострадавшего хорошо определяется пульс и необходимо только искусственное дыхание, то интервал между искусственными вдохами должен составлять 5 с (12 дыхательных циклов в минуту). Кроме расширения грудной клетки хорошим показателем эффективности искусственного дыхания может служить порозовение кожных покровов и слизистых, а также выход больного из бессознательного состояния и появление у него самостоятельного дыхания.

Прекращают искусственное дыхание после восстановления у пострадавшего достаточно глубокого и ритмичного самостоятельного дыхания. При остановке сердца, не теряя ни секунды, пострадавшего необходимо уложить на ровное жесткое основание (скамью, пол, в крайнем случае подложить под спину доску).

Если помощь оказывает один человек, то он располагается сбоку от пострадавшего и, наклонившись, делает два быстрых энергичных вдувания способом «изо рта в рот» или «изо рта в нос», затем поднимается, оставаясь на этой же стороне от пострадавшего, ладонь одной руки кладет на нижнюю половину грудины (отступив на два пальца от ее нижнего края), а пальцы приподнимает. Ладонь второй руки он кладет поверх первой поперек или вдоль и надавливает, помогая наклоном своего корпуса. Руки при надавливании должны быть выпрямлены в локтевых суставах. Надавливание следует производить быстрыми толчками, так, чтобы смещать грудину на 4-5 см, продолжительность надавливания должна быть не более 0,5 с, а интервал между отдельными надавливаниями - 0,5 с. В паузах руки с грудины не снимают, пальцы остаются прямыми, руки полностью выпрямлены в локтевых суставах. Если оживление проводит один человек, то на каждые два вдыхания он проводит 15 надавливаний на грудину.

 При участии в реанимации двух человек соотношение «дыхание - массаж» составляет 1:5. Во время искусственного вдоха пострадавшего выполняющий массаж сердца надавливание не производит, так как усилия, развиваемые при надавливании, значительно больше, чем при вдувании воздуха. После того как восстановится сердечная деятельность, и будет хорошо определяться пульс, массаж сердца немедленно прекращают, продолжая искусственное дыхание при слабом дыхании пострадавшего и стараясь, чтобы естественный и искусственный вдохи совпали. При неэффективности реанимационных мероприятий (кожные покровы синюшно-фиолетовые, зрачки широкие, пульс на артериях во время массажа не определяется) оживление прекращают через 30 мин.

Если пострадавший в сознании, но до этого был в обмороке или находился в бессознательном состоянии с сохранившимся устойчивым дыханием и пульсом, его следует уложить на подстилку (например, из одежды); расстегнуть одежду, стесняющую дыхание; согреть тело, если холодно; обеспечить прохладу, если жарко; создать полный покой, непрерывно наблюдая за пульсом и дыханием; удалить лишних людей.

Если пострадавший находится в бессознательном состоянии, необходимо наблюдать за его дыханием. В случае нарушения дыхания из-за западания языка, выдвинуть нижнюю челюсть вперед, взявшись пальцами за ее углы, и поддерживать ее в таком положении, пока не прекратится западание языка.

При возникновении у пострадавшего рвоты, необходимо повернуть его голову и плечи налево - для удаления рвотных масс.

Ни в коем случае нельзя позволять пострадавшему двигаться, а тем более продолжать работу, так как отсутствие видимых тяжелых повреждений от электрического тока или других причин (падения и т.п.) еще не исключает возможности последующего ухудшения его состояния. Только врач может решить вопрос о состоянии здоровья пострадавшего.

Переносить пострадавшего в другое место следует только в тех случаях, когда ему или лицу, оказывающему помощь, продолжает угрожать опасность или когда оказание помощи на месте невозможно (например, на опоре).

В случае невозможности вызова врача на место происшествия, необходимо обеспечить транспортировку пострадавшего в ближайшее лечебное учреждение. Перевозить пострадавшего можно только при удовлетворительном дыхании и устойчивом пульсе. Если состояние пострадавшего не позволяет его транспортировать, необходимо продолжать оказывать помощь.

Первая помощь при ожогах. При тяжелых ожогах,  вызванных   вольтовой дугой, электрическим током, паром или горячей мастикой и др. надо осторожно снять с пострадавшего одежду и обувь (лучше разрезать их). Нельзя касаться руками обожженного участка кожи или смазывать его какими-либо мазями, маслами, вазелином или раствором, так как ожоговая рана при загрязнении может загноиться и долго не заживать. Обожженную поверхность следует перевязать без обработки, покрыть стерильным материалом, сверху положить слой ваты и закрепить бинтом. После этого пострадавшего направляют в лечебное учреждение.

Не следует вскрывать пузыри, удалять приставшие к обожженному месту обуглившиеся вещества, отдирать обгоревшие куски одежды, так как, удаляя их, вы можете повредить кожу и тем самым создать условия для нагноения.

При ожогах глаз следует сделать пострадавшему холодные примочки из раствора борной кислоты и немедленно отправить его к врачу.

При поражении молнией оказывается та же помощь, что и при поражении электрическим током.

В общем случае существует Универсальная схема действий, определяющая последовательность оказания помощи пострадавшему (рис.10.7). Выполнение этой схемы действий поможет сохранить жизнь пострадавшему до прибытия медицинского персонала.

10.6. Безопасность эксплуатации электроустановок

            Эксплуатация электроустановок должна осуществляться в строгом соответствии с действующими ТНПА – ТКП 181-2009 «Правила технической эксплуатации электроустановок потребителей», ПУЭ, Межотраслевыми правилами по охране труда при работе в электроустановках (МПОТЭ)  и другими нормативными документами.

 Электробезопасность представляет собой систему организационных и технических мероприятий и средств, обеспечивающих защиту людей от вредного и опасного воздействия электрического тока, электрической дуги,  электромагнитного поля и статического электричества.

Согласно ГОСТ 12.1.019 электробезопасность должна обеспечиваться:

- конструкцией электроустановок;

- техническими способами и средствами защиты;

- организационным и техническими мероприятиями.

Конструкция электроустановок должна соответствовать условиям их эксплуатации, обеспечивать защиту персонала от  опасных и вредных воздействий электрического тока и электромагнитных полей, соприкосновения с токоведущими и движущимися частями. Ограждение токоведущих частей является обязательной частью конструкции электрооборудования.

В соответствии с ГОСТ 12.2.007 конструкции электрооборудования по способу защиты человека от поражения током подразделяются на пять классов защиты: 0; 01; I; II и III:

Класс 0 - электрооборудование, которое имеет рабочую изоляцию, но не имеет элементов для заземления, если это оборудование не отнесено к классам II и III;

Класс 01 - электрооборудование, имеющее рабочую изоляцию, элемент для заземления и провод без заземляющей жилы для присоединения этого оборудования к источнику питания;

Класс I - электрооборудование, которое в отличие от электрооборудования класса 01 в проводе для присоединения к источнику питания имеет заземляющую жилу и вилку с заземляющим контактом;

Класс II - электротехническое оборудование, имеющее двойную или усиленную изоляцию, но не имеющее элементов для заземления;

Класс III - электрооборудование, которое не имеет ни внешних, ни внутренних электрических цепей напряжением выше 42 В.

В соответствии с ГОСТ 14255 устанавливаются степени защиты персонала от прикосновения к токоведущим частям, попадания посторонних тел и проникновения воды (табл. 10.5).

Технические способы и средства защиты эксплуатации электрооборудования, устанавливаемые по ГОСТ 12.1.019, должны выбираться с учетом:

- номинального напряжения,

- рода и частоты тока;

- способа электроснабжения (стационарная сеть, автономный источник питания);

- режима нейтрали источника питания;

- вида исполнения (стационарные, передвижные, переносные); условий внешней среды (особо опасные помещения, помещения повышенной опасности, помещения без повышенной опасности, на открытом воздухе);

- возможности снятия напряжения с токоведущих частей, на которых или вблизи которых должна производиться работа;

- характера возможного прикосновения человека к элементам цепи тока (однофазное, двухфазное прикосновения, прикосновение к металлическим нетоковедущим частям, оказавшимся под напряжением); видов работ и т.д.

 

Таблица 10.5. Условные обозначения степеней защиты аппаратов

Степень защиты от прикосновения и попадания посторонних тел

Степень защиты от проникновения воды

0

1

2

3

4

5

6

7

8

Условное обозначение степени защиты аппаратов

0

IP00

-

-

-

-

-

-

-

-

1

IP10

IP11

IP12

-

-

-

-

-

-

2

IP20

IP21

IP22

IP23

-

-

-

-

-

3

IP30

IP31

IP32

IP33

IP34

-

-

-

-

4

IP40

IP41

IP42

IP43

IP44

-

-

-

-

5

IP50

IP51

-

-

IP54

IP55

IP56

-

-

6

IP60

-

-

-

-

IP65

IP66

IP67

IP68

 

Для обеспечения защиты от поражения электрическим током при прикосновении к металлическим нетоковедущим частям, которые могут оказаться под напряжением в результате повреждения изоляции, используют следующие способы:

- защитное заземление;

- защитное зануление;

- защитное отключение;

- выравнивание потенциала;

- электрическое разделение сети;

- система защитных проводов;

- изоляция токоведущих частей;

- безопасные (малые) напряжения;

- контроль изоляции;

- компенсация токов замыкания на землю;

- средства индивидуальной защиты и др.

Для обеспечения защиты от случайного прикосновения к токоведущим частям кроме того используют защитные оболочки, защитные ограждения (временные или стационарные), безопасное расположение токоведущих частей, изоляцию токоведущих частей (рабочая, дополнительная, усиленная, двойная), изоляцию рабочего места, предупредительную сигнализацию, блокировку, знаки безопасности.

Все вышеперечисленные способы и средства защиты могут использоваться как отдельно, так и в сочетании друг с другом.

Согласно ГОСТ 12.1.009 защитное заземление - это преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением (при пробое на корпус либо по другим причинам). Оно применяется в трехфазных трехпроводных сетях с изолированной нейтралью напряжением до 1000 В.

Принцип действия защитного заземления основан на снижении до безопасных значений напряжений прикосновения и шага, обусловленных замыканием одной из фаз на корпус электрооборудования и соответственно проходящего через тело человека тока.

Согласно ПУЭ, для электроустановок напряжением до 1000 В при изолированной нейтрали трансформатора (генератора) сопротивление защитного заземления должно быть не более 4 Ом.

В случае пробоя одной из фаз электросети на корпус электродвигателя благодаря защитному заземлению напряжение прикосновения, под которое может попасть человек, прикоснувшись к корпусу, значительно снижается.

На корпусе электрического двигателя появляется напряжение, равное произведению тока замыкания на землю Iз и сопротивления заземлителя Rз

Uк = IзRз

Ток однофазного замыкания на землю в сети напряжением до 1000 В обычно  не  превышает  10 А.  Следовательно,  напряжение  прикосновения  на корпусе заземленного оборудования при замыкании составит

Uк =10 · 4 = 40В

Поэтому ток Iч, проходящий через тело человека, тем меньше, чем меньше сопротивление заземлителя.

Защитное заземление выполняют путем преднамеренного соединения корпусов оборудования с землей. В качестве заземляющих проводников допускается использовать естественные заземлители - электропроводящие части коммуникаций и сооружений производственного или иного назначения (водопроводные трубы и любые другие металлические трубопроводы, за исключением трубопроводов горючих газов, жидкостей, а также трубопроводов, покрытых изоляцией, свинцовых оболочек кабелей) и т.п.

Принципиальная схема устройства защитного заземления показана на рис. 10.8.

К искусственным заземлителям относятся специальные электроды, закопанные в землю. Это могут быть стержни из угловой стали размером от 40x40 до 60x60 мм, стальные трубы диаметром 30-50 мм, полосовая сталь размером не менее 4x12 мм, стальные прутки диаметром 10-12 мм, забитые в землю вертикально и соединенные между собой под землей приваренной к ним стальной полосой.

Заземлитель каждого вида имеет свое сопротивление растеканию, которое определяется как суммарное сопротивление грунта от заземлителя до любой точки земли с нулевым потенциалом.

В качестве заземляющих проводников, соединяющих заземляемые части электроустановок с заземлителем, применяют медные, алюминиевые проводники или полосовую сталь. Заземляющие проводники прокладывают открыто, с хорошим доступом для осмотра. Они должны иметь отличительную окраску - по зеленому фону желтые полосы шириной 15 мм на расстоянии одна от другой в 150 мм. При выполнении заземления не допускается последовательное присоединение оборудования к заземлителю.

По расположению относительно корпусов электрооборудования различают два вида заземления: выносное (сосредоточенное) и контурное (распределенное). При выносном заземлении заземлитель вынесен за пределы площадки, на которой находится электрооборудование. Это дает возможность выбрать место с наименьшим сопротивлением грунта для размещения заземлителя. Недостатком такого заземления является то, что установка и человек находятся на земле с нулевым потенциалом, и в аварийных ситуациях человек может оказаться под напряжением прикосновения, равным напряжению заземлителя. Поэтому такой вид заземления используют только при небольшой силе тока замыкания на землю в электроустановках напряжением до 1000 В.

Более распространенным является контурное заземление, при котором одиночные заземлители размещены по контуру (периметру) производственной площадки. В аварийных ситуациях при таком виде заземления напряжения прикосновения и шага характеризуются небольшими значениями и, следовательно, достигается максимальная безопасность. Согласно ГОСТ 12.1.030 сопротивление заземляющего устройства нормируется и не должно превышать в любое время года нижеприведенных значений:

- 10 Ом - в стационарных сетях пожароопасных помещений с изолированной нейтралью напряжением до 1000 В;

- 4 Ом - в стационарных сетях взрывоопасных помещений, помещений с повышенной опасностью и особо опасных с изолированной нейтралью напряжением до 1000 В;

- 0,5 Ом - в установках напряжением выше 1000 В при большой расчетной силе тока замыкания на землю (Iз > 500 А);

- 250/Iз, но не более 10 Ом - в установках напряжением выше 1000 В, если сила тока замыкания небольшая.

Защитное зануление представляет собой преднамеренное электрическое соединение с нулевым защитным проводником металлических нетоковедущих частей, которые могут оказаться под напряжением (ГОСТ 12.1.009), а нулевой защитный проводник - это проводник, соединяющий зануляемые части с глухозаземленной нейтральной точкой обмотки источника тока или ее эквивалентом.

Этот метод защиты используют в четырехпроводных трехфазных сетях с глухозаземленной нейтралью напряжением до 1000 В, чаще в сетях 380 / 220 В и 220/127 В. Это связано с тем, что сила тока замыкания на землю в таких сетях велика и даже при нормативном значении сопротивления заземления при пробое фазы на корпус оборудования через тело человека может проходить ток значительной величины.

Принцип действия защитного зануления заключается в превращении случайного замыкания фазы на корпус в однофазное короткое замыкание (т.е. замыкание между фазным и нулевым проводами) с целью вызвать большой ток, способный обеспечить срабатывание защиты и тем самым отключить поврежденную электроустановку от источника питания.

Сила тока Iкз в этом случае определяется фазным напряжением и полным сопротивлением цепи короткого замыкания

Iкз = Uф/(Rт + Rф + Rн),

где Rт - внутреннее сопротивление трансформатора, Ом;

 Rф и Rн сопротивления фазного и нулевого проводников соответственно.

Если принять, что Rф = Rн = 0,1 Ом, так как в соответствии с ПУЭ проводимость нулевого провода должна быть не менее половины проводимости фазного провода (в реальных условиях эти величины значительно ниже), а значением Rт пренебречь, поскольку эта величина составляет тысячные доли Ома, то для сети напряжением 380/220 В получим

Iкз = 220/0,2 = 1100 А

Такая сила тока неизбежно вызовет срабатывание защиты, и установка автоматически отключится от сети. В качестве защитных средств можно использовать плавкие предохранители или автоматические выключатели (магнитные пускатели со встроенной тепловой защитой, контакторы в сочетании с тепловыми реле, другие автоматы, осуществляющие защиту одновременно от токов короткого замыкания и от перегрузки).

Защиту выбирают с таким расчетом, чтобы сила тока однофазного короткого замыкания превышала не менее чем в три раза номинальную силу тока срабатывания защитных устройств.

Для снижения опасности поражения людей электрическим током в случае обрыва нулевого провода и замыкания фазы на корпус за местом обрыва необходимо повторно заземлять нулевой провод, иначе присоединенные после места обрыва к нулевому проводу корпуса электроустановок окажутся под фазным напряжением.

Занулению подлежат те же металлические нетоковедущие части электрооборудования, что и заземлению (корпуса электроустановок, трансформаторов, аппаратов, приводы электрических машин, каркасы распределительных щитов, светильников, оболочки кабелей и т.п.). В сети с занулением корпус приемника нельзя заземлять, не присоединив его к нулевому защитному проводу.

Одновременное зануление и заземление одного и того же корпуса не только не опасно, а напротив, улучшает условия безопасности, так как создает дополнительное заземление нулевого защитного провода.

Зануление должно быть использовано в обязательном порядке в следующих случаях:

-  во всех электроустановках переменного тока напряжением 380 В и выше и установках постоянного тока напряжением выше 440 В;

-  в помещениях с повышенной опасностью, особо опасных помещениях и в наружных установках при напряжениях переменного тока более 42 В и постоянного выше 110 В;

-  при любом напряжении постоянного и переменного тока во взрывоопасных установках.

В настоящее время в соответствии с комплексом стандартов Р50571 «Электроустановки зданий», разработанным на основе стандартов Международной электротехнической комиссии (МЭК), используют следующие обозначения систем заземления: Т-NS, Т-NС и Т-N-С-S. В этой аббревиатуре Т обозначает   режим  нейтрали  (глухозаземленная),   N - защитное  зануление,   S - нулевой рабочий и нулевой защитный проводники работают раздельно на всем протяжении системы, С - эти проводники объединены на всем протяжении системы, С-S - они объединены на части системы.

Измерение сопротивления заземляющего устройства производят в соответствии с ПУЭ при сдаче-приемке, после монтажа и периодически во время эксплуатации. Для этой цели используют любые приборы, например, измерители сопротивления заземления РНИ-1.1, приборы М416, М417, М372, МС-07, МС-08 и др.

Однако зануление, как, впрочем, и заземление, не защищает человека от поражения электрическим током при прямом прикосновении к токоведущим частям. Поэтому помимо зануления и других защитных мер возникает необходимость использования защитного отключения и выравнивания потенциала.

Защитное отключение представляет собой быстродействующую защиту, обеспечивающую автоматическое отключение электроустановки1 при возникновении в ней опасности поражения током.

При применении этого вида защиты безопасность обеспечивается быстродействующим (0,1-0,2 с) отключением аварийного участка или всей сети при однофазном замыкании на землю или на элементы электрооборудования, нормально изолированные от земли, а также при прикосновении человека к частям, находящимся под напряжением.

Принцип работы защитно-отключающего устройства состоит в том, что оно постоянно контролирует величину входного сигнала (напряжение корпуса относительно земли, силу тока замыкания на корпус, напряжение фаз относительно земли, напряжение нулевой последовательности и т.п.) и сравнивает его с установленным значением (уставкой). Если входной сигнал отличается от уставки в худшую сторону, то устройство срабатывает и отключает электроустановку от сети.

Защитно-отключающие устройства включают следующие элементы: датчик, представляющий собой чувствительный элемент и воспринимающий входной сигнал (иногда называется фильтром); автоматический выключатель - исполнительный орган, отключающий электроустановку или участок сети при поступлении аварийного сигнала.

На рис. 10.9 приведена наиболее простая схема защитного отключения, срабатывающего при появлении напряжения на корпусе электрооборудования относительно земли. В схемах этого типа датчиком служит реле напряжения Рз, включенное между корпусом и вспомогательным заземлителем.

Защитное отключение может служить дополнением к системам защитных заземления и зануления, а также единственным и основным средством защиты.

Выравнивание потенциала - это метод снижения напряжения прикосновения и шага между точками электрической цепи, к которым возможно одновременное прикосновение или на которых может одновременно стоять человек (ГОСТ 12.1.009).

Для выравнивания потенциала используют контурное заземление или укладывают стальные полосы в виде сетки по всей площадке, занятой оборудованием. Кроме того, для выравнивания потенциала во всех помещениях и наружных установках, где применяются защитные заземление и зануление, строительные металлические конструкции, трубопроводы всех назначений, корпуса технологического оборудования должны быть присоединены к сетям зануления или заземления. Выравнивание потенциала как самостоятельный метод защиты не используют.

Поскольку разветвленные электрические сети, широко используемые в производстве, характеризуются значительной емкостью и небольшим сопротивлением исправной изоляции проводов, то для повышения безопасности работы с ними производится так называемое защитное электрическое разделение сети.

Электрическое разделение сети - это разделение ее на отдельные электрически не связанные между собой участки с помощью разделяющего трансформатора. Такие трансформаторы с коэффициентом трансформации 1:1 применяются в установках напряжением до 1000 В и предназначены для отделения приемников от первичной электрической сети и сети заземления. Причем от разделяющего трансформатора может быть запитан только один приемник с защитной плавкой вставкой (сила тока вставки автомата на первичной стороне не должна превышать 25 А). Вторичное напряжение разделяющих трансформаторов должно быть не выше 380 В. Вторичная обмотка трансформатора и корпус электроприемника не должны иметь ни заземления, ни связи с сетью зануления. Тогда при прикосновении человека к частям, находящимся под напряжением, или к корпусу с поврежденной изоляцией не создается опасность, поскольку вторичная цепь коротка и сила токов утечки в ней и емкостных токов ничтожно мала.

Разделение сетей обычно используют в электроустановках, эксплуатация которых связана с особой и повышенной опасностью.

Изоляция токоведущих частей с использованием диэлектрических материалов является основным методом защиты от поражения электрическим током и может быть рабочей, дополнительной, двойной и усиленной.

Рабочая изоляция - это электрическая изоляция токоведущих частей электроустановки, обеспечивающая ее нормальную работу и защиту от поражения электрическим током. Рабочей изоляцией являются эмаль и оплетка обмоточных проводов, пропиточные лаки, компаунды и т.д.

Дополнительная изоляция представляет собой электрическую изоляцию, предусмотренную дополнительно к рабочей изоляции для защиты от поражения электрическим током в случае повреждения последней. Дополнительной изоляцией могут быть пластмассовый корпус машины, изолирующая втулка и т.п.

Двойная изоляция - это электрическая изоляция, состоящая из рабочей и дополнительной изоляции. Она считается вполне достаточной для обеспечения электробезопасности. Поэтому электроинструментом и другими устройствами с двойной изоляцией разрешается пользоваться без применения других защитных средств.

Усиленная изоляция - это улучшенная рабочая изоляция, обеспечивающая такую же степень защиты от поражения электрическим током, как и двойная изоляция.

Чаще всего в токоведущих проводах используют медные и алюминиевые жилы. Если в обозначении марки провода первая буква А, то провод имеет алюминиевую жилу. Медная жила не маркируется. Провода с резиновой изоляцией условно обозначаются буквой Р,  стоящей,  как правило,  после буквы П; В - провод с полихлорвиниловой, а Н - с наиритовой изоляцией соответственно;  Г - провод гибкий; Л - токопроводящая жила покрыта лаком; Ф - металлическая оболочка с фальцованным швом; Ш - шнуры. Бумажная изоляция буквенного индекса не имеет.

Провода и кабели должны иметь изоляцию, соответствующую напряжению сети, а защитные оболочки - условиям и способу прокладки. Соединения, ответвления и оконцевания жил проводов и кабелей должны производиться при помощи опрессовки, сварки, пайки или сжимов (винтовых, болтовых и т.п.).

В пыльных помещениях не рекомендуется применять способы прокладки, при которых на элементах электропроводки может скапливаться пыль, а удаление ее будет затруднительным. В помещениях и наружных установках с химически активной средой все элементы электропроводки должны быть стойкими по отношению к среде либо защищены от ее воздействия.

В местах, где возможны механические повреждения электропроводки, ее защищают трубами, коробами или ограждают.

В местах пересечения проводов, если расстояние между ними менее 10 мм, должна быть наложена дополнительная изоляция. При пересечении проводов и кабелей с трубопроводами расстояние между ними в свету должно быть не менее 50 мм, а с трубопроводами, содержащими легковоспламеняющиеся жидкости (ЛВЖ), горючие жидкости (ГЖ) и горючие газы (ГГ) - не менее 100 мм. При параллельной прокладке расстояние от проводов и кабелей до трубопровода должно быть не менее 100 мм, а до трубопроводов с ЛВЖ и ГГ - не менее 400 мм.

В условиях воздействия химически активной среды или других неблагоприятных факторов электроизоляционные свойства изоляции снижаются. С течением времени развиваются местные дефекты, сопротивление изоляции начинает резко уменьшаться, а ток утечки непропорционально расти. На месте дефектов возникают частичные разряды тока, что приводит к выгоранию изоляции. Происходит так называемый пробой изоляции, в результате чего возникает короткое замыкание, которое может привести к пожару или поражению людей электрическим током.

В связи с этим в соответствии с ПУЭ сопротивление изоляции необходимо контролировать. Согласно действующим Правилам, сопротивление изоляции между любым проводом и землей, а также между любыми проводами на участке, между двумя соседними предохранителями в распределительной сети напряжением до 1000 В должно составлять не менее 0,5 МОм. Его измеряют периодически в процессе эксплуатации (не реже одного раза в год - в помещениях с повышенной опасностью и не реже двух раз в год -  в особо опасных помещениях), вне очереди - если обнаружены дефекты, после монтажа сети или ее ремонта.

Для измерения сопротивления изоляции проводов чаще всего используются мегомметры типа М1101М на напряжение 100-1000 В и МС-05, МС-06 - на напряжение 2500 В.

При работе в производственном помещении особенно тщательно следует проверять и контролировать пригодность выбранных проводов и способ их прокладки, контролировать техническое состояние осветительной арматуры, рубильников, электродвигателей и другого электрооборудования.

Для повышения безопасности и удобства работы в зависимости от функционального назначения проводников следует использовать следующие расцветки изоляции: черную - в силовых цепях; красную - в цепях управления, измерения и сигнализации переменного тока; синюю -в аналогичных цепях постоянного тока; зелено-желтую -в цепях заземления; голубую - для проводников, соединенных с нулевым проводом и не предназначенных для заземления.

Применение безопасных (малых) напряжений позволяет резко снизить опасность поражения человека электрическим током особенно при проведении работ в помещениях с повышенной опасностью, особо опасных помещениях и на наружных установках.

Безопасное напряжение - это номинальное напряжение не более 42 В, применяемое в целях уменьшения опасности поражения электрическим током (ГОСТ 12.1.009). В соответствии с ГОСТ 12.2.007 безопасным является переменное напряжение ниже 42 В и постоянное - ниже 110 В.

Безопасные напряжения используют для питания электроинструмента, светильников стационарного освещения, переносных ламп, т.е. в тех случаях, когда возможен длительный контакт с корпусом электрооборудования в помещениях с повышенной опасностью или особо опасных, а также в других случаях.

В качестве источников питания безопасным напряжением могут использоваться специальные понижающие трансформаторы с вторичным напряжением 12-42 В, батареи гальванических элементов, аккумуляторы, выпрямительные установки. Применение автотрансформаторов для этих целей запрещено, поскольку первичная и вторичная обмотки автотрансформатора электрически связаны между собой.

Для предотвращения перехода высшего напряжения с первичной обмотки на вторичную и повышения безопасности работ с понижающим трансформатором необходимо заземлить или занулить корпус и вторичную обмотку. Между обмотками трансформатора должна быть двойная изоляция. Для повышения безопасности работ с малым напряжением конструкции вилок и штепсельных розеток должны отличаться от подобных для электроустановок, работающих при напряжениях выше 42 В.

Компенсация токов замыкания на землю заключается в установке между нейтралью и землей компенсационной катушки. Этот вид защиты используют одновременно с защитным заземлением или отключением.

Оградительные устройства применяют для того, чтобы исключить даже случайные прикосновения к токоведущим частям электроустановок. Ограждение токоведущих частей, как правило, должно предусматриваться конструкцией электрооборудования.

Оголенные провода и шины, а также приборы, аппараты, распределительные щиты и т.п., имеющие незащищенные и доступные для прикосновения токоведущие части, помещают в специальные ящики, шкафы, камеры и другие устройства, закрывающиеся сплошными или сетчатыми ограждениями. Особенно это важно для электроустановок напряжением выше 1000 В, так как в этом случае опасно даже приближение к токоведущим частям.  

Сплошные ограждения в виде кожухов и крышек (оболочки) применяют в электроустановках напряжением до 1000 В, расположенных в производственных неэлектротехнических помещениях. Сетчатые ограждения с размером ячеек 25x25 мм используют в электроустановках с напряжением выше 1000 В и доступных лишь квалифицированному электротехническому персоналу. Сетчатые ограждения должны иметь двери, запираемые на замок и снабженные электрическими и механическими блокировками.

В тех случаях, когда изоляция и ограждение токоведущих частей оказываются невозможными или нецелесообразными (например, воздушные линии электропередачи высокого напряжения), их размещают на недоступной для прикосновения высоте.

Внутри производственных помещений неогражденные голые токоведущие части прокладывают на высоте не менее 3,5 м от пола.

В электроустановках широко используются блокировки, предупредительная сигнализация, знаки безопасности.

Блокировка электротехнического изделия по ГОСТ 18311 - часть электротехнического изделия, предназначенная для предотвращения или ограничения выполнения операций одними частями изделия при определенных состояниях или положениях других частей изделия в целях предупреждения возникновения в нем недопустимых состояний или исключения доступа к его частям, находящимся под напряжением. Иными словами, блокировки (блокировочные устройства) надежно исключают возможность случайного прикосновения к находящимся под напряжением частям, расположенным в специальных закрытых помещениях.

Блокировки  (механические, электрические, электромагнитные и др.)   обеспечивают снятие напряжения с токоведущих частей при попытке проникнуть к ним при открывании ограждения без снятия напряжения. Блокировка защищает от поражения электрическим током путем автоматического разрыва электрической цепи перед тем, как человек может оказаться под напряжением. Например, при снятии защитного ограждения или открывании дверок электроустановки, находящейся под напряжением, контакты разъединяются, отключая ее от источника питания. Как правило, блокировки используют в электрических аппаратах, при обслуживании которых должны соблюдаться повышенные меры безопасности, в электрооборудовании, расположенном в доступных для неэлектротехнического персонала помещениях.

Предупредительная сигнализация обычно используется в сочетании с другими мерами защиты. Сигнализация может быть световой и звуковой. Для световых сигналов применяют цвета в соответствии с ГОСТ 12.2.007:

- красный - для запрещающих и аварийных сигналов, а также для предупреждения о перегрузках, неправильных действиях, опасности и т.д.;

- желтый - для привлечения внимания (о достижении предельных значений, о переходе на автоматическую работу и т.п.);

- зеленый - для сигнализации безопасности (нормальный режим работы, разрешение на начало действия и т.п.);

- белый - для обозначения включенного состояния выключателя (когда нерационально применение красного, желтого и зеленого цветов);

- синий - в специальных случаях, когда не могут быть применены остальные цвета.

Сигнальные лампы и светосигнальные аппараты должны обеспечиваться знаками или надписями, указывающими значения сигналов (например, «Включено», «Отключено», «Нагрев» и т.п.).

Для исключения ошибочных соединений и лучшей ориентации в электрических цепях электроустановок провода, шины и кабели должны иметь маркировку в виде цифровых и буквенных обозначений и отличительную окраску.

Для профилактики электротравматизма используются знаки безопасности по ГОСТ 12.4.026 и предупредительные плакаты, которые делятся на четыре группы: предупреждающие (предостерегающие) знаки и плакаты, а также запрещающие, предписывающие и указательные плакаты (рис. 10.10).

Основным назначением знаков и плакатов являются:

- предупреждение об опасности при приближении к частям, находящимся под напряжением;

- запрещение оперировать аппаратами, которые могут подать напряжение на место, отведенное для работы;

- указание места, подготовленного к работе;

- напоминание о принятых мерах безопасности.

Обеспечению электробезопасности человека способствует также окраска отдельных частей электроустановок в соответствии с ГОСТ 12.4.026. Так, внутренние поверхности дверок шкафов, ниш, пультов управления, в которых установлены электроустановки с напряжением выше 42 В, должны быть окрашены в красный цвет. Следует отметить, что окраска не является методом защиты, а только используется в дополнение к рассмотренным способам защиты.

Электрозащитные средства представляют собой переносимые и перевозимые изделия, служащие для защиты людей, работающих с электроустановками, от поражения электрическим током, от воздействия электрической дуги и электромагнитного поля (ГОСТ 12.1.009).

По назначению электрозащитные средства условно делятся на изолирующие, ограждающие и вспомогательные.

Изолирующие защитные средства служат для изоляции человека от токоведущих частей и от земли (рис. 10.11) и подразделяются, в свою очередь, на основные и дополнительные.

Основные средства способны надежно выдерживать рабочее напряжение электроустановки и допускают касание токоведущих частей, находящихся под напряжением. В электроустановках напряжением до 1000 В к основным изолирующим защитным средствам относятся электроизолирующие штанги всех видов, электроизолирующие и электроизмерительные клещи, указатели напряжения, электроизолирующие перчатки, ручной электроизолированный инструмент.

Дополнительные электрозащитные средства - это такие средства защиты, которые при данном напряжении не могут обеспечить защиту от поражения током, поэтому их применяют совместно с основными электрозащитными средствами.

К дополнительным электрозащитным средствам в электроустановках напряжением до 1000 В относятся: электроизолирующие галоши, ковры, подставки, колпаки и накладки, переносные заземления,  оградительные устройства, плакаты и знаки безопасности.

Защитные средства следует подвергать эксплуатационным, периодическим и внеочередным (после ремонта) испытаниям. Результаты электрических и механических испытаний заносят в лабораторный журнал.   Нормы и сроки электрических и механических испытаний установлены в зависимости от вида электрозащитного средства, рабочего напряжения и типа испытаний.

Перед каждым использованием защитного средства персонал обязан:

- проверить исправность и отсутствие внешних повреждений, очистить и обтереть от пыли; резиновые перчатки проверить на отсутствие проколов;

- проверить по штампу, на какое напряжение рассчитано данное средство и не истек ли срок его периодического испытания. Не допускается использование защитных средств  с истекшим сроком испытания.

К ограждающим защитным средствам относятся различные переносные ограждения, предназначенные для временного ограждения токоведущих частей, и таким образом предотвращающие возможность прикосновения к ним.

Инструмент, приспособления и устройства, для защиты электротехнического персонала от падения с высоты (предохранительные пояса, страховочные канаты и др.), от световых, тепловых или химических воздействий (защитные очки, респираторы, противогазы, брезентовые рукавицы и др.); от шума (противошумные наушники, шлемы, вкладыши и др.), а также для безопасного подъема на опоры (монтерские когти, лазы для подъема на бетонные опоры и т. п.) и др. представляют группу вспомогательных защитных средств.

Все приборы, аппараты и приспособления, применяемые в качестве защитных средств, должны быть только заводского изготовления, выполнены и испытаны в соответствии с действующими нормативно-техническими документами.

Организационные и технические мероприятия по обеспечению электробезопасности  включают:

- назначение лиц, ответственных за организацию и безопасность производства работ;

- оформление наряда или распоряжения на производство работ;

- осуществление допуска к проведению работ;

- организацию надзора за проведением работ;

- оформление окончания работы, перерывов в работе, переводов на другие рабочие места;

- установление рациональных режимов труда и отдыха.

Конкретные перечни работ, которые должны выполняться по наряду или распоряжению, устанавливаются в отраслевой нормативно-технической документации.

Для обеспечения безопасности работ в электроустановках следует выполнять:

- отключение установки (части установки) от источника питания;

- проверку отсутствия напряжения;

- механическое запирание приводов коммутационных аппаратов, снятие предохранителей, отсоединение концов питающих линий и другие меры, исключающие возможность ошибочной подачи напряжения к месту работы;

- заземление отключенных токоведущих частей (наложение переносных заземлителей, включение заземляющих ножей);

- ограждение рабочего места или остающихся под напряжением токоведущих частей, к которым в процессе работы можно прикоснуться или приблизиться на недопустимое расстояние.

При проведении работ со снятием напряжения в действующих электроустановках или вблизи них необходимо осуществить:

- отключение электроустановки (части установки) от источника питания электроэнергией;

- механическое запирание приводов коммутационных аппаратов, снятие предохранителей, отсоединение концов питающих линий и другие меры, исключающие возможность ошибочной подачи напряжения к месту работы;

- установку знаков безопасности и ограждение остающихся под напряжением токоведущих частей, к которым в процессе работы можно прикоснуться или приблизиться на недопустимое расстояние;

- наложение заземлений (включение заземляющих ножей или наложение переносных заземлений);

- ограждение рабочего места и установка предписывающих знаков безопасности.

При проведении работ на токоведущих частях, находящихся под напряжением, работы должны выполняться по наряду не менее, чем двумя лицами, с применением электрозащитных средств, с обеспечением безопасного расположения работающих и используемых механизмов и приспособлений.

10.7. Требования к персоналу, обслуживающему электроустановки

                 Обслуживание действующих электроустановок должны осуществлять специально подготовленные работники, соответствующие требованиям действующих ТНПА. Для обеспечения электробезопасности персонал, обслуживающий электроустановки, делится на 5 групп. Электротехническому персоналу присваиваются группы IIV и он может непосредственно входить в состав энергослужбы или состоять в штате производственных подразделений предприятия. Группа I по электробезопасности  присваивается неэлектротехническому персоналу.

         Для непосредственного выполнения обязанностей по организации эксплуатации электроустановок приказом работодателя назначается ответственный за электрохозяйство и его заместитель. Приказ издается после успешной проверки знаний ТНПА по электробезопасности и присвоения этим лицам IY группы по электробезопасности (при наличии электроустановок  напряжением до 1000 В) и Y группы (при наличии электроустановок  напряжением выше 1000 В).

         Руководитель организации и лицо, ответственное за электрохозяйство, как и работники, их замещающие, несут персональную ответственность за создание безопасных условий труда работникам электрохозяйства.

         В организациях, где установленная мощность электроустановок не превышает 30 кВА, ответственный за электрохозяйство может не назначаться.

         Лица, ответственные за электрохозяйство обязаны:

- организовать разработку и ведение необходимой документации по эксплуатации электроустановок;

- организовать обучение, инструктирование, проверку знаний и допуск к самостоятельной работе электротехнического персонала;

- организовать безопасное проведение всех видов работ в электроустановках;

- обеспечить своевременное и качественное выполнение технического обслуживания, планово-предупредительных ремонтов и профилактических испытаний электроустановок;

- организовать проведение расчетов норм электропотребления и потребности предприятия в электроэнергии (мощности), а также осуществлять контроль за ее расходованием;

- участвовать в разработке и внедрении мероприятий по рациональному потреблению электроэнергии и т.д.

         В соответствии с ТКП 181-2009 к I-ой группе по электробезопасности относится неэлектротехнический персонал, выполняющий работы, при которых может возникнуть опасность поражения электрическим током. Он должен иметь элементарные представления об опасности электрического тока и мерах безопасности при работе на обслуживаемом участке (электрооборудовании, установке). Лица с группой 1 должны быть знакомы с правилами оказания первой доврачебной помощи пострадавшим от электрического тока. Перечень должностей и профессий, требующих присвоения им группы I по электробезопасности, определяется работодателем.

         Присвоение работающим группы I производится путем проверки знаний в форме устного опроса, а также приобретенных умений и навыков безопасных приемов работы и оказания помощи при поражении электротоком. Присвоение  этой группы проводит работник из числа электротехнического персонала с группой по электробезопасности не ниже III по письменному указанию ответственного за электрохозяйство лица и оформляется в специальном журнале с подписью проверяемого и проверяющего. Ответственность за своевременную проверку знаний у персонала с группой I и выше несет руководство цехов, участков и других подразделений предприятия. Выдача удостоверений персоналу с группой I не требуется. В организациях без электротехнического персонала присвоение группы I по электробезопасности проводит представитель территориального органа госэнергонадзора. Проверка знаний неэлектротехнического персонала на группу I по электробезопасности проводится с периодичностью 1 раз в три года.

             Для лиц с группой 11 обязательно элементарное техническое знакомство с электроустановками, отчетливое представление об опасности электрического тока и приближения к токоведущим частям, а также знание основных мер предосторожности при работах в электроустановках и практических навыков оказания первой помощи пострадавшим от действия электрического тока.

             Лицом с группой V необходимо знать схемы и оборудование своего участка; ПУЭ, ясно представляя требования того или иного пункта этих Правил; уметь организовать безопасное производство работ и вести надзор за ними в электроустановках любого напряжения; знать правила оказания первой помощи и уметь практически оказывать эту помощь пострадавшим от электрического тока, а также уметь обучать персонал других групп правилам безопасности и оказанию первой помощи пострадавшим.        

             Электротехнический персонал  предприятия подразделяется на административно-технический, оперативный, ремонтный и оперативно- ремонтный.      

             К электротехническому персоналу II-V групп по электробезопасности предъявляются следующие требования:

-лица, не достигшие 18-летнего возраста, не могут быть допущены к самостоятельным работам в электроустановках;

-они не должны иметь увечий и болезней (стойкой формы), мешающих производственной работе;

-обязаны после соответствующей теоретической и практической подготовки пройти проверку знаний и иметь удостоверение на допуск к работам в электроустановках.

             Состояние здоровья электротехнического персонала, обслуживающего электроустановки, определяется медицинским освидетельствованием при приеме на работу, а также периодически в сроки, определенные действующими ТНПА. До назначения на самостоятельную работу или при переходе на другую работу (должность), связанную с эксплуатацией электроустановок, а также при перерывах в работе в качестве электротехнического персонала   свыше одного года работники обязаны пройти стажировку (производственное обучение) на новом месте работы. Обучение должно производиться по утвержденной программе под руководством опытного работника из электротехнического персонала предприятия или вышестоящей организации. Продолжительность стажировки должна быть от 5 до 14 рабочих смен.

             По окончании производственного обучения работник должен пройти в квалификационной комиссии проверку знаний и ему должна быть присвоена соответствующая (IIV) группа по электробезопасности.

                   Кроме того, периодическая проверка знаний персонала проводится в следующие сроки:

             -1 раз в год - для электротехнического персонала, непосредственно обслуживающего действующие электроустановки или проводящего в них наладочные, электромонтажные, ремонтные работы или профилактические испытания, а также для персонала, оформляющего распоряжения и организующего эти работы;

             -1 раз в три года -  для административно-технического персонала, не относящегося к предыдущей группе, а также специалистов по охране труда, допущенных к инспектированию электроустановок и имеющих право их единоличного осмотра.

 

10.8. Классификация взрывоопасных и пожароопасных зон производственных помещений и наружных установок

 

Во взрыво- и пожароопасных производствах, особенно при работе со взрывоопасными газами, парами, пылями, например с ацетиленом, оксидом этилена, ацетоном, диэтиловым эфиром, электроустановки могут служить источниками воспламенения. Так, при неправильной эксплуатации или неисправности электрооборудования возможны его перегрев или появление искровых разрядов, которые могут вызвать пожар или взрыв горючей среды.

Электрическая искра является одним из наиболее мощных источников воспламенения. Большая температура (около 10 000 °С) в канале искрового разряда способствует протеканию интенсивных окислительно-восстановительных реакций. Возникновение электрических искр в производственных условиях возможно при замыкании и размыкании электрических цепей в выключателях, рубильниках, пусковой и другой аппаратуре, а также при коротком замыкании, плохих электрических контактах.

В связи с этим особые требования предъявляются к электрооборудованию, работающему во взрывоопасных средах. Это электрооборудование отличается от общепромышленного не только конструкцией, но и тем, что оно выполнено по специальным правилам и может эксплуатироваться во взрывоопасных средах без опасности их воспламенения.

Основными способами борьбы с воспламенением от электрооборудования являются правильный его выбор и надлежащая эксплуатация. В связи с этим все помещения и наружные установки согласно Правилам устройства электроустановок (ПУЭ) классифицируют на пожароопасные (П-I, П-II, П-IIа, П-III) и взрывоопасные (В-I, В-Iа, В-I6, В-Iг, В-II, В-IIа) зоны.

Пожароопасная зона - это открытое пространство, в котором могут находиться горючие вещества как при нормальном технологическом процессе, так и при возможных его нарушениях.

Класс П-1 - зоны производственных помещений, в которых применяют или хранят жидкости с температурой вспышки выше 61 °С.

Класс П-II - зоны производственных помещений, в которых при проведении технологического процесса выделяются горючие пыль или частицы волокна с нижним концентрационным пределом воспламенения более 65 г/м3 к объему воздуха.

Класс П-IIа - зоны производственных и складских помещений, в которых обращаются горючие вещества.

Класс П-III - зоны, расположенные вне помещений, в которых используются горючие жидкости с температурой вспышки паров выше 61°С или твердые горючие вещества.

Если пожароопасные производственные установки размещены на открытой площадке, то пожароопасной зоной с признаками классов П-1, П-II, П-IIа считается зона на расстоянии 5 м по горизонтали от границ пожароопасной установки, а по вертикали - до ближайшей ограждающей конструкции (перекрытия или покрытия).

Взрывоопасная зона - это пространство, где имеются или могут появиться взрывоопасные смеси, и в пределах которой на исполнение электрооборудования накладываются ограничения с целью уменьшения вероятности возникновения взрыва, вызванного электрооборудованием.

Класс В-I - зоны производственных помещений, в которых выделяются горючие газы (ГГ) и пары ЛВЖ в таком количестве и с такими свойствами, что они могут образовывать с воздухом взрывоопасные смеси при нормальных недлительных режимах работы, например при загрузке и разгрузке технологических аппаратов, хранении или переливании ЛВЖ, находящихся в открытых сосудах, и т. д.

Класс В-Iа - зоны производственных помещений, в которых взрывоопасная концентрация газов и паров возможна только в результате аварии или неисправностей.

Класс В-Iб - те же зоны, что и относящиеся к классу В-Iа, в которых взрывоопасные смеси возможны только в результате аварий или неисправностей и которые отличаются одной из следующих особенностей:

- ГГ в этих зонах обладают высоким нижним концентрационным пределом воспламенения (15% и более) и резким запахом при ПДК;

- помещения производств, связанных с обращением водорода, в которых исключается образование взрывоопасной смеси в объеме, превышающем 5% свободного объема помещения, и имеют взрывоопасную зону только в верхней части помещения;

- зоны помещений, в которых ГГ и ЛВЖ имеются в небольших количествах, недостаточных для создания взрывоопасных смесей в объеме, превышающем 5% свободного объема помещения, в которых работа производится без применения открытого пламени.

Зоны не относятся к взрывоопасным, если работы с ГГ и ЛВЖ производятся в вытяжных шкафах или под вытяжными зонтами.

Класс В-Iг - пространства у наружных установок, надземных и подземных резервуаров, содержащих ГГ или ЛВЖ, эстакад для слива и налива ЛВЖ, открытых нефтеловушек, у предохранительных и дыхательных клапанов емкостей и технологических аппаратов.

Класс В-II - зоны производственных помещений, в которых возможно образование взрывоопасных концентраций пылей или волокон с воздухом при нормальных режимах работы.

Класс В-IIа - зоны, аналогичные зонам класса В-II, в которых взрывоопасные концентрации пылей и волокон могут образовываться только в результате аварий или неисправностей.

Класс пожаро- и взрывоопасности зон производственных помещений и наружных установок устанавливается на стадии проектирования.

Применяемые в этих помещениях электроустановки должны обеспечивать как необходимую степень защиты их обмоток от воздействия окружающей среды, так и необходимую безопасность в отношении пожара или взрыва по причине их неисправности.

10.9. Взрывозащищенное  электрооборудование и принцип его подбора

В соответствии с ПУЭ в пожароопасных зонах, как правило, используется электрооборудование закрытого типа, внутренняя полость которого отделена от внешней среды оболочкой. Аппаратура управления и защиты, светильники применяются в пыленепроницаемом исполнении. Вся электропроводка обеспечивается надежной изоляцией.

Во взрывоопасных зонах и наружных установках необходимо использовать взрывозащищенное электрооборудование, изготовленное в соответствии с ГОСТ  30852.0-2002 Электрооборудование взрывозащищенное. Часть 0. Общие требования. Электрооборудование по степени его надежности при установленных нормативными документами условиях подразделяется на три уровня взрывозащиты:

2-й уровень - повышенной надежности против взрыва, в котором взрывозащита обеспечена только при нормальном режиме работы;

1-й уровень - взрывобезопасное, в котором взрывозащита обеспечивается как при нормальном режиме работы, так и при признанных вероятных повреждениях, кроме повреждений средств взрывозащиты;

0-й уровень - особовзрывобезопасное, в котором по отношению к взрывобезопасному приняты дополнительные средства взрывозащиты.

Для обеспечения необходимого уровня взрывозащиты в оборудовании используют специальные виды взрывозащиты, под которыми понимают конструктивные средства и меры, обеспечивающие невоспламенение окружающей взрывоопасной среды от электрических искр, дуг, пламени, нагретых частей.

Виды взрывозащиты обозначаются латинскими буквами и означают следующее:

d - взрывонепроницаемая оболочка, т. е. такая оболочка, которая выдерживает давление взрыва внутри нее и предотвращает без ее повреждения распространение взрыва в окружающую взрывоопасную среду через зазоры или отверстия («щелевая защита»);

i - искробезопасная электрическая цепь, которая выполнена так, что электрический разряд или нагрев цепи не могут воспламенить окружающую среду при предписанных условиях испытания;

ia – опасная ситуация не может возникнуть при нормальной эксплуатации при помехах на линии и при любых комбинациях двух возможных неисправностей;

ib - опасная ситуация не может возникнуть при нормальной эксплуатации при помехах на линии и одной неисправности. После главного вида защиты может указываться дополнительной;

ic - искробезопасные цепи этого уровня  не должны вызывать воспламенение взрывоопасной смеси в стандартных условиях испытаний от теплового воздействия и от искрений - с вероятностью большей 10-3 при нормальной работе и введении всех неучитываемых повреждений, создающих наиболее опасные условия.

е - защита заключается в том, что в электрооборудовании (или его части), не имеющем нормально искрящих частей, принят ряд мер, дополнительно используемых в электрооборудовании общего назначения, затрудняющих появление опасных нагревов, искр, дуг;

р - заполнение или продувка оболочки под избыточным давлением чистым воздухом или инертным газом;

о - масляное заполнение оболочки; все нормально искрящие части погружены в минеральное масло или любой жидкий негорючий диэлектрик, что исключает возможность соприкосновения между ними и взрывоопасными смесями газов, паров, пыли;

n – защита вида «n». Она включает различные виды взрывозащиты;

m – заполнение компаундом;

q - кварцевое заполнение оболочки;

s - специальный вид взрывозащиты, основанный на принципах, отличных от приведенных выше, но достаточный для обеспечения взрывозащиты; например, токоведущие части электрооборудования залиты эпоксидными смолами заключены в оболочку, находящуюся под постоянным избыточным давлением воздуха или инертного газа (без продувки).

В зависимости от области применения взрывозащищенное электрооборудование подразделяется на две группы:

- рудничное (цифра I), предназначенное для шахт и подземных выработок (в химической промышленности не применяется);

- для производственных помещений и наружных установок (цифра II).

В зависимости от величины щелевого (фланцевого) зазора (БЭМЗ) электрооборудование типов d и i подразделяется на подгруппы IIА, IIВ, IIС

Для ограничения нагрева внутренних и наружных частей взрывозащищенного электрооборудования установлены его температурные классы, равные нижней температуре самовоспламенения соответствующей группы смесей (табл. 10.6).

Таблица 10.6 . Температурные классы

взрывозащищенного оборудования

Температурный класс

°C

Температурный класс

°С

Т1

до 450

Т4

135

Т2

300

Т5

100

ТЗ

200

Т6

80

 

Маркировка взрывозащищенного электрооборудования выполняется в прямоугольнике в виде цельного, не разделенного на части знака.

Например, 2ЕхdПАТЗ, где 2 означает уровень взрывозащиты, Ех, указывает, что электрооборудование соответствует ГОСТ, d - вид взрывозащиты, ПА - категория взрывоопасной смеси и ТЗ - температурный класс оборудования.

Оборудование сохраняет взрывозащиту, если находится в среде со взрывоопасной смесью тех категорий и групп, для которых выполнена его взрывозащита, или в среде со взрывоопасной смесью менее опасной категории и группы. Если во взрывоопасной зоне присутствует несколько веществ, то выбор электрооборудования производится по наиболее опасному веществу.

Согласно требований ГОСТ 30852.0-2002 соответствующие уровни взрывозащиты могут обеспечиваться для электрооборудования:

♦ 2 - повышенной надежности против взрыва

- взрывозащитой вида «i» с уровнем искробезопасной электрической цепи «iс» и выше;

- взрывозащитой вида «р», имеющей устройство сигнализации о недопустимом снижении давления;

- взрывозащитой вида «q»;

- защитой вида «е»;

- взрывозащитой вида «d»;

- масляным заполнением для электрооборудования группы II и заполнением негорючей жидкостью для электрооборудования группы I оболочек, удовлетворяющих требованиям взрывозащиты вида «о»;

- взрывозащитой вида «s».

♦ 1 - взрывобезопасного

- взрывозащитой вида «i»;

- взрывозащитой вида «р» с устройством сигнализации и автоматического отключения напряжения питания;

- взрывозащитой вида «d» для взрывобезопасного электрооборудования;

- специальным видом взрывозащиты «s»;

- защитой вида «е», заключенной во взрывонепроницаемую оболочку;

- заключением в оболочку, предусмотренную для защиты «р» с устройством сигнализации о снижении давления ниже допустимого значения электрооборудования группы II с защитой вида «е»;

♦ 0 - особовзрывобезопасного

- взрывозащитой вида «i»;

- специальным видом взрывозащиты «s»;

- взрывобезопасным электрооборудованием с дополнительными средствами взрывозащиты (например, заключением искроопасных частей, залитых компаундом или погруженных в жидкий или сыпучий диэлектрик, во взрывонепроницаемую оболочку, или продуванием взрывонепроницаемой оболочки чистым воздухом под избыточным давлением при наличии устройств контроля давления, сигнализации и автоматического отключения напряжения при недопустимом снижении давления или при повреждении взрывонепроницаемой оболочки).

В соответствии с ГОСТ 30852.13-2002 при выборе электрооборудования для взрывоопасных зон необходимо:

- установить класс взрывоопасной зоны на основе анализа веществ и материалов, свойств окружающей среды;

- определить категорию и группу взрывоопасной смеси;

- согласно ПУЭ выбрать требуемое исполнение электрооборудования;

- по справочнику найти конкретный тип (марку) электрооборудования.

Во взрывоопасных помещениях рекомендуется принимать следующие уровни и степени защиты электрооборудования (табл. 10.7).

Во взрывоопасных зонах электрическое оборудование и приборы могут использоваться лишь при условии, что уровень их взрывозащиты или степень защиты оболочки соответствуют той же степени защиты, что и для электрических машин.

 

Таблица 10.7. Требования к электрическим машинам, аппаратам

 и приборам взрывоопасных зон

Класс взрывоопасной зоны

Уровень взрывозащиты или степень защиты

В-I

Взрывобезопасный с учетом категорий и группы взрывоопасной смеси

В-Iа, В-Iг

Повышенной надежности против взрыва

В-Iб

Без средств взрывозащиты. Степень защиты - IР44

B-II

В-Па

Взрывобезопасный

Без средств взрывозащиты. Степень защиты - IР54

 

Пусковую аппаратуру (выключатели, магнитные пускатели) в классах зон В-I и В-II необходимо выносить за пределы взрывоопасных помещений и снабжать устройством дистанционного управления. Провода внутри взрывоопасных помещений следует прокладывать в стальных трубах или использовать для этих целей бронированный кабель.

Во взрывоопасных зонах светильники могут применяться в том случае, если уровень  их  взрывозащиты  соответствует  следующим  условиям (табл. 10.8).

Допускается освещать светильниками общего назначения помещения со взрывоопасными зонами любого класса одним из следующих способов:

- через неоткрывающиеся окна без фрамуг и форточек, снаружи здания, причем при одинарном остеклении окон светильники должны иметь защитные стекла или стеклянные кожухи;

- через специально устроенные в стене ниши с двойным остеклением и естественной их вентиляцией;

- через фонари специального типа со светильниками, установленными в потолке с двойным остеклением и естественной их вентиляцией;

- с помощью щелевых световодов.

Таблица.10.8. Требования к электрическим

светильникам взрывоопасных зон

Класс взрывоопасной зоны

Уровень взрывозащиты или степень защиты светильника

В-I

Взрывобезопасный с учетом категорий и группы взрывоопасной смеси

В-Iа, В-Iг

Повышенной надежности против взрыва

Б-Iб

Без средств взрывозащиты. Степень защиты - IР53

B-II

Повышенной надежности против взрыва. Любой взрывозащищенный

B-IIa

Стационарный - степень защиты оболочки 1Р53; переносной - повышенной надежности против взрыва

 

В пожароопасных зонах должны использоваться светильники со следующими степенями защиты:

- в зонах классов П-1 и П-II - закрытые, с любыми источниками света, степень защиты IР 53, а в зоне класса П-II при наличии местных отсосов и общеобменной вентиляции - IР 23;

- в зонах классов П-IIа и П-Ш степень защиты светильников с любым источником света должна быть не ниже IР 23.

Электропроводку внутри светильников с лампами накаливания и ДРЛ до места присоединения внешних проводников выполняют термостойкими проводами.

Переносные светильники в пожароопасных зонах любого класса должны иметь степень защиты не менее IР 54, а стеклянный колпак должен быть защищен металлической сеткой. Расстояние от светильников до горючих материалов - не менее 0,5 м.

Во взрывоопасных зонах вентиляционное оборудование должно соответствовать требованиям Правил монтажа и безопасной эксплуатации взрывозащищенных вентиляторов, применяемых на химических, нефтехимических и нефтеперерабатывающих производствах, утвержденных постановлением МЧС РБ 07.07.2005 г. №39.

Эксплуатация взрывозащищенного электрооборудования запрещается в следующих случаях: при неисправных средствах взрывозащиты, блокировки, заземления, аппаратов защиты, нарушении схем управления защитой и поврежденных кабелях; с открытыми крышками оболочек, наличием на взрывозащищенных поверхностях вмятин, царапин, сколов; при изменении заводской конструкции защиты; при отсутствии знаков и надписей взрывозащиты, снятия пломбы лицами, не имеющими на это разрешения.

 

Контрольные вопросы

1.   Какие могут быть повреждения здоровья при воздействии электрического тока на человека?

2.   Какие факторы определяют опасность поражения электрическим током?

3.   Как зависит степень поражения человека электротоком от режима нейтрали?

4.   Какие вы знаете методы обеспечения электробезопасности?

5.   В чем заключается устройство и принцип действия защитных заземления и зануления?

6.   Какие средства коллективной и индивидуальной защиты обеспечивают электробезопасность?

7.   Что представляют собой меры первой доврачебной помощи при поражении электрическим током?

8.  Как классифицируются взрывоопасные и пожароопасные зоны помещений и наружных установок?

9.  Как классифицируются электрозащитные средства?

10. Что такое организационные и технические мероприятия обеспечения электробезопасности?

     11. В чем заключаются требования к персоналу, обслуживающему электроустановки?